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Preface
As a result of leveraging deep learning methods such as convolutional neural networks
(CNNs), computer vision is attaining new heights in fields including health, the automotive
sector, social media, and robotics. Whether to automate complex tasks, to guide experts in
their work, or to help artists in their creative process, more and more companies are
integrating computer vision solutions.

In this book, we will explore TensorFlow 2, the brand new version of Google's open source
framework for machine learning. Covering its key features, as well as state-of-the-art
solutions, we will demonstrate how to efficiently build, train, and deploy CNNs for a
variety of real-life tasks.

Who this book is for
This book is intended for anyone with some background in Python programming and
image processing (such as knowing how to read and write image files, and how to edit their
pixel values). With its gradual learning curve, this book targets not only deep learning
novices but also experts who are curious about the new features of TensorFlow 2.

While some theoretical explanations require knowledge of algebra and calculus, concrete
examples are provided for learners focused on practical applications. Step by step, you will
tackle real-life tasks, such as visual recognition for self-driving cars and smartphone
applications.

What this book covers
Chapter 1, Computer Vision and Neural Networks, introduces you to computer vision and
deep learning, providing some theoretical background and teaching you how to implement
and train a neural network for visual recognition from scratch.
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Chapter 2, TensorFlow Basics and Training a Model, goes through TensorFlow 2 concepts
related to computer vision, as well as some more advanced notions. It introduces
Keras—now a submodule of TensorFlow—and describes the training of a simple
recognition method implemented with these frameworks.

Chapter 3, Modern Neural Networks, presents CNNs and explains how they have
revolutionized computer vision. This chapter also introduces regularization tools and
modern optimization algorithms that can be used to train more robust recognition systems.

Chapter 4, Influential Classification Tools, provides theoretical details and practical code to
expertly apply state-of-the-art solutions—such as Inception and ResNet—to the
classification of images. This chapter also explains what makes transfer learning a key
concept in machine learning, and how it can be performed with TensorFlow 2.

Chapter 5, Object Detection Models, covers the architecture of two methods to detect specific
objects in images—You Only Look Once, known for its speed, and Faster R-CNN, known
for its accuracy.

Chapter 6, Enhancing and Segmenting Images, introduces autoencoders and how networks
such as U-Net and FCN can be applied to image denoising, semantic segmentation, and
more.

Chapter 7, Training on Complex and Scarce Datasets, focuses on solutions to efficiently collect
and preprocess datasets for your deep learning applications. TensorFlow tools that build
optimized data pipelines are presented, as well as various solutions to compensate for data
scarcity (image rendering, domain adaptation, and generative networks such as VAEs and
GANs).

Chapter 8, Video and Recurrent Neural Networks, covers recurrent neural networks,
presenting the more advanced version known as the long short-term memory architecture.
It provides practical code to apply LSTMs to action recognition in video.

Chapter 9, Optimizing Models and Deploying on Mobile Devices, details model optimization in
terms of speed, disk space, and computational performance. It goes through the
deployment of TensorFlow solutions on mobile devices and in the browser, using a
practical example.

Appendix, Migrating from TensorFlow 1 to TensorFlow 2, provides some information about
TensorFlow 1, highlighting key changes introduced in TensorFlow 2. A guide to migrate
older projects to the latest version is also included. Finally, per-chapter references are listed
for those who want to dive deeper.
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To get the most out of this book
The following section contains some information and advice to facilitate the reading of this
book and to help readers benefit from its supplementary materials.

Download and run the example code files
Practice makes perfect. Therefore, this book not only provides in-depth explanations of
TensorFlow 2 and state-of-the-art computer-vision methods, but it also comes with a
number of practical examples and complete implementations for each chapter.

Download the code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- Computer- Vision- with- TensorFlow- 2. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing. Check them out!

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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Study and run the experiments
Jupyter Notebook (https:/ /jupyter. org) is an open source web application for creating
and sharing Python scripts, along with textual information, visual results, equations, and
more. We will call Jupyter notebooks the documents provided with the book, containing
detailed code, expected results, and supplementary explanations. Each Jupyter notebook is
dedicated to a concrete computer vision task. For example, one notebook explains how to
train a CNN to detect animals in images, while another details all the steps to build a
recognition system for self-driving cars, and so on.

As we will see in this section, these documents can either be studied directly, or they can be
used as code recipes to run and reproduce the experiments presented in the book.

Study the Jupyter notebooks online
If you simply want to go through the code and results provided, you can directly access
them online in the book's GitHub repository. Indeed, GitHub is able to render Jupyter
notebooks and to display them as static web pages.

However, the GitHub viewer ignores some style formatting and interactive content. For the
best online viewing experience, we recommend using instead Jupyter nbviewer (https:/ /
nbviewer.jupyter. org), an official web platform you can use to read Jupyter notebooks
uploaded online. This website can be queried to render notebooks stored in GitHub
repositories. Therefore, the Jupyter notebooks provided can also be read at the following
address: https://nbviewer. jupyter. org/ github/ PacktPublishing/ Hands- On- Computer-
Vision-with-TensorFlow- 2.

Run the Jupyter notebooks on your machine
To read or run these documents on your machine, you should first install Jupyter
Notebook. For those who already use Anaconda (https:/ /www. anaconda. com) to manage
and deploy their Python environments (as we will recommend in this book), Jupyter
Notebook should be directly available (as it is installed with Anaconda). For those using
other Python distributions and those not familiar with Jupyter Notebook, we recommend
having a look at the documentation, which provides installation instructions and tutorials
(https://jupyter. org/ documentation).

Once Jupyter Notebook is installed on your machine, navigate to the directory containing
the book's code files, open a terminal, and execute the following command:

$ jupyter notebook

https://jupyter.org
https://jupyter.org
https://jupyter.org
https://jupyter.org
https://jupyter.org
https://jupyter.org
https://jupyter.org
https://nbviewer.jupyter.org
https://nbviewer.jupyter.org
https://nbviewer.jupyter.org
https://nbviewer.jupyter.org
https://nbviewer.jupyter.org
https://nbviewer.jupyter.org
https://nbviewer.jupyter.org
https://nbviewer.jupyter.org
https://nbviewer.jupyter.org/github/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://nbviewer.jupyter.org/github/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://nbviewer.jupyter.org/github/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
https://nbviewer.jupyter.org/github/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2
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The web interface should open in your default browser. From there, you should be able to
navigate the directory and open the Jupyter notebooks provided, either to read, execute, or
edit them.

Some documents contain advanced experiments that can be extremely
compute-intensive (such as the training of recognition algorithms over
large datasets). Without the proper acceleration hardware (that is, without
compatible NVIDIA GPUs, as explained in Chapter 2, TensorFlow Basics
and Training a Model), these scripts can take hours or even days (even with
compatible GPUs, the most advanced examples can take quite some time).

Run the Jupyter notebooks in Google Colab
For those who wish to run the Jupyter notebooks themselves—or play with new
experiments—but do not have access to a powerful enough machine, we recommend using
Google Colab, also named Colaboratory (https:/ /colab. research. google. com). It is a
cloud-based Jupyter environment, provided by Google, for people to run compute-
intensive scripts on powerful machines. You will find more details regarding this service in
the GitHub repository.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781788830645_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input. Here is an example: "The .fit() method of the
Model object starts the training procedure."

A block of code is set as follows:

import tensorflow as tf

x1 = tf.constant([[0, 1], [2, 3]])
x2 = tf.constant(10)
x = x1 * x2
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When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

neural_network = tf.keras.Sequential(
    [tf.keras.layers.Dense(64),
     tf.keras.layers.Dense(10, activation="softmax")])

Any command-line input or output is written as follows:

$ tensorboard --logdir ./logs

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"You can observe the performance of your solution on the Scalars page of TensorBoard."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
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Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/
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Section 1: TensorFlow 2 and

Deep Learning Applied to
Computer Vision

This section covers the fundamentals of computer vision and deep learning, with the help
of concrete TensorFlow examples. Starting with a presentation of these technical domains,
the first chapter will then walk you through the inner workings of neural networks. This
section continues with an introduction to the instrumental features of TensorFlow 2 and
Keras, and their key concepts and ecosystems. It ends with a description of machine
learning techniques adopted by computer vision experts.

The following chapters will be covered in this section:

Chapter 1, Computer Vision and Neural Networks
Chapter 2, TensorFlow Basics and Training a Model
Chapter 3, Modern Neural Networks



1
Computer Vision and Neural

Networks
In recent years, computer vision has grown into a key domain for innovation, with more
and more applications reshaping businesses and lifestyles. We will start this book with a
brief presentation of this field and its history so that we can get some background
information. We will then introduce artificial neural networks and explain how they have
revolutionized computer vision. Since we believe in learning through practice, by the end
of this first chapter, we will even have implemented our own network from scratch!

The following topics will be covered in this chapter:

Computer vision and why it is a fascinating contemporary domain
How we got there—from local hand-crafted descriptors to deep neural networks
Neural networks, what they actually are, and how to implement our own for a
basic recognition task

Technical requirements
Throughout this book, we will be using Python 3.5 (or higher). As a general-purpose
programming language, Python has become the main tool for data scientists thanks to its
useful built-in features and renowned libraries.



Computer Vision and Neural Networks Chapter 1

[ 10 ]

For this introductory chapter, we will only use two cornerstone libraries—NumPy and
Matplotlib. They can be found at and installed from www.numpy.org and matplotlib.org.
However, we recommend using Anaconda (www.anaconda.com), a free Python distribution
that makes package management and deployment easy.

Complete installation instructions—as well as all the code presented alongside this
chapter—can be found in the GitHub repository at github.com/PacktPublishing/Hands-
On-Computer-Vision-with-TensorFlow2/tree/master/Chapter01.

We assume that our readers already have some knowledge of Python and
a basic understanding of image representation (pixels, channels, and so
on) and matrix manipulation (shapes, products, and so on).

Computer vision in the wild
Computer vision is everywhere nowadays, to the point that its definition can drastically
vary from one expert to another. In this introductory section, we will paint a global picture
of computer vision, highlighting its domains of application and the challenges it faces.

Introducing computer vision
Computer vision can be hard to define because it sits at the junction of several research and
development fields, such as computer science (algorithms, data processing, and graphics),
physics (optics and sensors), mathematics (calculus and information theory), and biology
(visual stimuli and neural processing). At its core, computer vision can be summarized as
the automated extraction of information from digital images.

Our brain works wonders when it comes to vision. Our ability to decipher the visual
stimuli our eyes constantly capture, to instantly tell one object from another, and to
recognize the face of someone we have met only once, is just incredible. For computers,
images are just blobs of pixels, matrices of red-green-blue values with no further meaning.

The goal of computer vision is to teach computers how to make sense of these pixels the way
humans (and other creatures) do, or even better. Indeed, computer vision has come a long
way and, since the rise of deep learning, it has started achieving super human performance
in some tasks, such as face verification and handwritten text recognition.

http://www.numpy.org/
https://matplotlib.org/
https://www.anaconda.com
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow2/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow2/tree/master/Chapter01
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With a hyper active research community fueled by the biggest IT companies, and the ever-
increasing availability of data and visual sensors, more and more ambitious problems are
being tackled: vision-based navigation for autonomous driving, content-based image and
video retrieval, and automated annotation and enhancement, among others. It is truly an
exciting time for experts and newcomers alike.

Main tasks and their applications
New computer vision-based products are appearing every day (for instance, control 
systems for industries, interactive smartphone apps, and surveillance systems) that cover a
wide range of tasks. In this section, we will go through the main ones, detailing their
applications in relation to real-life problems.

Content recognition
A central goal in computer vision is to make sense of images, that is, to extract meaningful,
semantic information from pixels (such as the objects present in images, their location, and
their number). This generic problem can be divided into several sub-domains. Here is a
non-exhaustive list.

Object classification
Object classification (or image classification) is the task of assigning proper labels (or
classes) to images among a predefined set and is illustrated in the following diagram:

Figure 1.1: Example of a classifier for the labels of people and cars applied to an image set
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Object classification became famous for being the first success story of deep convolutional
neural networks being applied to computer vision back in 2012 (this will be presented later
in this chapter). Progress in this domain has been so fast since then that super human
performance is now achieved in various use cases (a well-known example is the
classification of dog breeds; deep learning methods have become extremely efficient at
spotting the discriminative features of man's best friend).

Common applications are text digitization (using character recognition) and the automatic
annotation of image databases.

In Chapter 4, Influential Classification Tools, we will present advanced classification methods
and their impact on computer vision in general.

Object identification
While object classification methods assign labels from a predefined set, object identification (or
instance classification) methods learn to recognize specific instances of a class.

For example, an object classification tool could be configured to return images containing
faces, while an identification method would focus on the face's features to identify the
person and recognize them in other images (identifying each face in all of the images, as
shown in the following diagram):

Figure 1.2: Example of an identifier applied to portraits
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Therefore, object identification can be seen as a procedure to cluster a dataset, often
applying some dataset analysis concepts (which will be presented in Chapter 6, Enhancing
and Segmenting Images).

Object detection and localization
Another task is the detection of specific elements in an image. It is commonly applied to face
detection for surveillance applications or even advanced camera apps, the detection of 
cancerous cells in medicine, the detection of damaged components in industrial plants, and
so on.

Detection is often a preliminary step before further computations, providing smaller
patches of the image to be analyzed separately (for instance, cropping someone's face for
facial recognition, or providing a bounding box around an object to evaluate its pose for
augmented reality applications), as shown in the following diagram:

Figure 1.3: Example of a car detector, returning bounding boxes for the candidates

State-of-the-art solutions will be detailed in Chapter 5, Object Detection Models.
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Object and instance segmentation
Segmentation can be seen as a more advanced type of detection. Instead of simply
providing bounding boxes for the recognized elements, segmentation methods return masks
labeling all the pixels belonging to a specific class or to a specific instance of a class (refer to
the following Figure 1.4). This makes the task much more complex, and actually one of the
few in computer vision where deep neural networks are still far from human performance
(our brain is indeed remarkably efficient at drawing the precise boundaries/contours of
visual elements). Object segmentation and instance segmentation are illustrated in the
following diagram:

Figure 1.4: Comparing the results of object segmentation methods and instance segmentation methods for cars

In Figure 1.4, while the object segmentation algorithm returns a single mask for all pixels
belonging to the car class, the instance segmentation one returns a different mask for each
car instance that it recognized. This is a key task for robots and smart cars in order to
understand their surroundings (for example, to identify all the elements in front of a
vehicle), but it is also used in medical imagery. Precisely segmenting the different tissues in
medical scans can enable faster diagnosis and easier visualization (such as coloring each
organ differently or removing clutter from the view). This will be demonstrated in Chapter
6, Enhancing and Segmenting Images, with concrete experiments for autonomous driving
applications.



Computer Vision and Neural Networks Chapter 1

[ 15 ]

Pose estimation
Pose estimation can have different meanings depending on the targeted tasks. For rigid
objects, it usually means the estimation of the objects' positions and orientations relative to the
camera in the 3D space. This is especially useful for robots so that they can interact with
their environment (object picking, collision avoidance, and so on). It is also often used in
augmented reality to overlay 3D information on top of objects.

For non-rigid elements, pose estimation can also mean the estimation of the positions of their
sub-parts relative to each other. More concretely, when considering humans as non-rigid
targets, typical applications are the recognition of human poses (standing, sitting, running,
and so on) or understanding sign language. These different cases are illustrated in the
following diagram:

Figure 1.5: Examples of rigid and non-rigid pose estimation

In both cases—that is, for whole or partial elements—the algorithms are tasked with
evaluating their actual position and orientation relative to the camera in the 3D world,
based on their 2D representation in an image.

Video analysis
Computer vision not only applies to single images, but also to videos. If video streams are
sometimes analyzed frame by frame, some tasks require that you consider an image
sequence as a whole in order to take temporal consistency into account (this will be one of
the topics of Chapter 8, Video and Recurrent Neural Networks).
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Instance tracking
Some tasks relating video streams could naively be accomplished by studying each frame
separately (memory less), but more efficient methods either take into account differences
from image to image to guide the process to new frames or take complete image sequences
as input for their predictions. Tracking, that is, localizing specific elements in a video stream, is a
good example of such a task.

Tracking could be done frame by frame by applying detection and identification methods
to each frame. However, it is much more efficient to use previous results to model the
motion of the instances in order to partially predict their locations in future frames. Motion
continuity is, therefore, a key predicate here, though it does not always hold (such as for
fast-moving objects).

Action recognition
On the other hand, action recognition belongs to the list of tasks that can only be run with a
sequence of images. Similar to how we cannot understand a sentence when we are given
the words separately and unordered, we cannot recognize an action without studying a
continuous sequence of images (refer to Figure 1.6).

Recognizing an action means recognizing a particular motion among a predefined set (for
instance, for human actions—dancing, swimming, drawing a square, or drawing a circle).
Applications range from surveillance (such as the detection of abnormal or suspicious
behavior) to human-machine interactions (such as for gesture-controlled devices):

Figure 1.6: Is Barack Obama in the middle of waving, pointing at someone, swatting a mosquito, or something else?
Only the complete sequence of frames could help to label this action
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Since object recognition can be split into object classification, detection,
segmentation, and so on, so can action recognition (action classification,
detection, and so on).

Motion estimation
Instead of trying to recognize moving elements, some methods focus on estimating the actual
velocity/trajectory that is captured in videos. It is also common to evaluate the motion of the
camera itself relative to the represented scene (egomotion). This is particularly useful in the
entertainment industry, for example, to capture motion in order to apply visual effects or to
overlay 3D information in TV streams such as sports broadcasting.

Content-aware image edition
Besides the analysis of their content, computer vision methods can also be applied to
improve the images themselves. More and more, basic image processing tools (such as low-
pass filters for image denoising) are being replaced by smarter methods that are able to use
prior knowledge of the image content to improve its visual quality. For instance, if a
method learns what a bird typically looks like, it can apply this knowledge in order to
replace noisy pixels with coherent ones in bird pictures. This concept applies to any type of
image restoration, whether it be denoising, deblurring, or resolution enhancing (super-
resolution, as illustrated in the following diagram):

Figure 1.7: Comparison of traditional and deep learning methods for image super-resolution. Notice how the details are sharper in the second image
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Content-aware algorithms are also used in some photography or art applications, such as
the smart portrait or beauty modes for smartphones, which aim to enhance some of the
models' features, or the smart removing/editing tools, which get rid of unwanted elements
and replace them with a coherent background.

In Chapter 6, Enhancing and Segmenting Images, and in Chapter 7, Training on Complex and
Scarce Datasets, we will demonstrate how such generative methods can be built and served.

Scene reconstruction
Finally, though we won't tackle it in this book, scene reconstruction is the task of recovering
the 3D geometry of a scene, given one or more images. A simple example, based on human
vision, is stereo matching. This is the process of finding correspondences between two
images of a scene from different viewpoints in order to derive the distance of each
visualized element. More advanced methods take several images and match their content
together in order to obtain a 3D model of the target scene. This can be applied to the 3D
scanning of objects, people, buildings, and so on.

A brief history of computer vision
"Study the past if you would define the future."

– Confucius                            

In order to better understand the current stand of the heart and current challenges of
computer vision, we suggest that we quickly have a look at where it came from and how it
has evolved in the past decades.

First steps to initial successes
Scientists have long dreamed of developing artificial intelligence, including visual
intelligence. The first advances in computer vision were driven by this idea.
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Underestimating the perception task
Computer vision as a domain started as early as the 60s, among the Artificial Intelligence
(AI) research community. Still heavily influenced by the symbolist philosophy, which
considered playing chess and other purely intellectual activities the epitome of human
intelligence, these researchers underestimated the complexity of lower animal functions such
as perception. How these researchers believed they could reproduce human perception
through a single summer project in 1966 is a famous anecdote in the computer vision
community.

Marvin Minsky was one of the first to outline an approach toward building AI systems
based on perception (in Steps toward artificial intelligence, Proceedings of the IRE, 1961). He
argued that with the use of lower functions such as pattern recognition, learning, planning,
and induction, it could be possible to build machines capable of solving a broad variety of
problems. However, this theory was only properly explored from the 80s onward. In
Locomotion, Vision, and Intelligence in 1984, Hans Moravec noted that our nervous system,
through the process of evolution, has developed to tackle perceptual tasks (more than 30%
of our brain is dedicated to vision!).

As he noted, even if computers are pretty good at arithmetic, they cannot compete with our
perceptual abilities. In this sense, programming a computer to solve purely intellectual
tasks (for example, playing chess) does not necessarily contribute to the development of
systems that are intelligent in a general sense or relative to human intelligence.

Hand-crafting local features
Inspired by human perception, the basic mechanisms of computer vision are 
straightforward and have not evolved much since the early years—the idea is to first extract
meaningful features from the raw pixels, and then match these features to known, labeled ones in
order to achieve recognition.

In computer vision, a feature is a piece of information (often
mathematically represented as a one or two-dimensional vector) that is
extracted from data that is relevant to the task at hand. Features include
some key points in the images, specific edges, discriminative patches, and
so on. They should be easy to obtain from new images and contain the
necessary information for further recognition.
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Researchers used to come up with more and more complex features. The extraction of
edges and lines was first considered for the basic geometrical understanding of scenes or
for character recognition; then, texture and lighting information was also taken into
account, leading to early object classifiers.

In the 90s, features based on statistical analysis, such as principal component analysis
(PCA), were successfully applied for the first time to complex recognition problems such as
face classification. A classic example is the Eigenface method introduced by Matthew Turk
and Alex Pentland (Eigenfaces for Recognition, MIT Press, 1991). Given a database of face
images, the mean image and the eigenvectors/images (also known as characteristic
vectors/images) were computed through PCA. This small set of eigenimages can
theoretically be linearly combined to reconstruct any face in the original dataset, or beyond.
In other words, each face picture can be approximated through a weighted sum of the
eigenimages (refer to Figure 1.8). This means that a particular face can simply be defined by
the list of reconstruction weights for each eigenimage. As a result, classifying a new face is
just a matter of decomposing it into eigenimages to obtain its weight vector, and then
comparing it with the vectors of known faces:

Figure 1.8: Decomposition of a portrait image into the mean image and weighted sum of eigenimages. These mean and eigenimages were computed over a larger face dataset

Another method that appeared in the late 90s and revolutionized the domain is called Scale
Invariant Feature Transform (SIFT). As its name suggests, this method, introduced by
David Lowe (in Distinctive Image Features from Scale-Invariant Keypoints, Elsevier), represents
visual objects by a set of features that are robust to changes in scale and orientation. In the
simplest terms, this method looks for some key points in images (searching for
discontinuities in their gradient), extracts a patch around each key point, and computes a
feature vector for each (for example, a histogram of the values in the patch or in its
gradient). The local features of an image, along with their corresponding key points, can
then be used to match similar visual elements across other images. In the following image,
the SIFT method was applied to a picture using OpenCV (https:/ /docs. opencv. org/ 3.1.
0/da/df5/tutorial_ py_ sift_ intro. html). For each localized key point, the radius of the
circle represents the size of the patch considered for the feature computation, and the line
shows the feature orientation (that is, the main orientation of the neighborhood's gradient):
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Figure 1.9: Representation of the SIFT key points extracted from an image (using OpenCV)

More advanced methods were developed over the years—with more robust ways of
extracting key points, or computing and combining discriminative features—but they
followed the same overall procedure (extracting features from one image, and comparing
them to the features of others).

Adding some machine learning on top
It soon appeared clear, however, that extracting robust, discriminative features was only
half the job for recognition tasks. For instance, different elements from the same class can
look quite different (such as different-looking dogs) and, as a result, share only a small set
of common features. Therefore, unlike image-matching tasks, higher-level problems such as
semantic classification cannot be solved by simply comparing pixel features from query
images with those from labeled pictures (such a procedure can also become sub-optimal in
terms of processing time if the comparison has to be done with every image from a large
labeled dataset).

This is where machine learning come into play. With an increasing number of researchers
trying to tackle image classification in the 90s, more statistical ways to discriminate images
based on their features started to appear. Support vector machines (SVMs), which were
standardized by Vladimir Vapnik and Corinna Cortes (Support-vector networks, Springer,
1995), were, for a long time, the default solution for learning a mapping from complex
structures (such as images) to simpler labels (such as classes).
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Given a set of image features and their binary labels (for example, cat or not cat, as
illustrated in Figure 1.10), an SVM can be optimized to learn the function to separate one
class from another, based on extracted features. Once this function is obtained, it is just a
matter of applying it to the feature vector of an unknown image so that we can map it to
one of the two classes (SVMs that could extend to a larger number of classes were later
developed). In the following diagram, an SVM was taught to regress a linear function
separating two classes based on features extracted from their images (features as vectors of
only two values in this example):

Figure 1.10: An illustration of a linear function regressed by an SVM. Note that using a concept known as the kernel trick, SVMs can also find non-linear solutions to separate
classes

Other machine learning algorithms were adapted over the years by the computer vision
community, such as random forests, bags of words, Bayesian models, and obviously neural
networks.

Rise of deep learning
So, how did neural networks take over computer vision and become what we nowadays
know as deep learning? This section offers some answers, detailing the technical
development of this powerful tool.

Early attempts and failures
It may be surprising to learn that artificial neural networks appeared even before modern
computer vision. Their development is the typical story of an invention too early for its
time.
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Rise and fall of the perceptron
In the 50s, Frank Rosenblatt came up with the perceptron, a machine learning algorithm 
inspired by neurons and the underlying block of the first neural networks (The Perceptron: A
Probabilistic Model for Information Storage and Organization in the Brain, American
Psychological Association, 1958). With the proper learning procedure, this method was
already able to recognize characters. However, the hype was short-lived. Marvin Minsky
(one of the fathers of AI) and Seymor Papert quickly demonstrated that the perceptron
could not learn a function as simple as XOR (exclusive OR, the function that, given two
binary input values, returns 1 if one, and only one, input is 1, and returns 0 otherwise).
This makes sense to us nowadays—as the perceptron back then was modeled with a linear
function while XOR is a non-linear one—but, at that time, it simply discouraged any further
research for years.

Too heavy to scale
It was only in the late 70s to early 80s that neural networks got some attention put back on
them. Several research papers introduced how neural networks, with multiple layers of
perceptrons put one after the other, could be trained using a rather straightforward
scheme—backpropagation. As we will detail in the next section, this training procedure
works by computing the network's error and backpropagating it through the layers of
perceptrons to update their parameters using derivatives. Soon after, the first convolutional
neural network (CNN), the ancestor of current recognition methods, was developed and
applied to the recognition of handwritten characters with some success.

Alas, these methods were computationally heavy, and just could not scale to larger
problems. Instead, researchers adopted lighter machine learning methods such as SVMs,
and the use of neural networks stalled for another decade. So, what brought them back and
led to the deep learning era we know of today?

Reasons for the comeback
The reasons for this comeback are twofold and rooted in the explosive evolution of the
internet and hardware efficiency.
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The internet – the new El Dorado of data science
The internet was not only a revolution in communication; it also deeply transformed data
science. It became much easier for scientists to share images and content by uploading them
online, leading to the creation of public datasets for experimentation and benchmarking.
Moreover, not only researchers but soon everyone, all over the world, started adding new
content online, sharing images, videos, and more at an exponential rate. This started big
data and the golden age of data science, with the internet as the new El Dorado.

By simply indexing the content that is constantly published online, image and video
datasets reached sizes that were never imagined before, from Caltech-101 (10,000 images,
published in 2003 by Li Fei-Fei et al., Elsevier) to ImageNet (14+ million images, published in
2009 by Jia Deng et al., IEEE) or Youtube-8M (8+ million videos, published in 2016 by Sami
Abu-El-Haija et al., including Google). Even companies and governments soon understood
the numerous advantages of gathering and releasing datasets to boost innovation in their
specific domains (for example, the i-LIDS datasets for video surveillance released by the
British government and the COCO dataset for image captioning sponsored by Facebook
and Microsoft, among others).

With so much data available covering so many use cases, new doors were opened (data-
hungry algorithms, that is, methods requiring a lot of training samples to converge could
finally be applied with success), and new challenges were raised (such as how to efficiently
process all this information).

More power than ever
Luckily, since the internet was booming, so was computing power. Hardware kept
becoming cheaper as well as faster, seemingly following Moore's famous law (which states
that processor speeds should double every two years—this has been true for almost four
decades, though a deceleration is now being observed). As computers got faster, they also
became better designed for computer vision. And for this, we have to thank video games.

The graphical processing unit (GPU) is a computer component, that is, a chip specifically
designed to handle the kind of operations needed to run 3D games. Therefore, a GPU is
optimized to generate or manipulate images, parallelizing these heavy matrix operations.
Though the first GPUs were conceived in the 80s, they became affordable and popular only
with the advent of the new millennium.
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In 2007, NVIDIA, one of the main companies designing GPUs, released the first version of
CUDA, a programming language that allows developers to directly program for
compatible GPUs. OpenCL, a similar language, appeared soon after. With these new tools,
people started to harness the power of GPUs for new tasks, such as machine learning and
computer vision.

Deep learning or the rebranding of artificial neural
networks
The conditions were finally there for data-hungry, computationally-intensive algorithms to
shine. Along with big data and cloud computing, deep learning was suddenly everywhere.

What makes learning deep?
Actually, the term deep learning had already been coined back in the 80s, when neural
networks first began stacking two or three layers of neurons. As opposed to the early,
simpler solutions, deep learning regroups deeper neural networks, that is, networks with
multiple hidden layers—additional layers set between their input and output layers. Each
layer processes its inputs and passes the results to the next layer, all trained to extract
increasingly abstract information. For instance, the first layer of a neural network would
learn to react to basic features in the images, such as edges, lines, or color gradients; the
next layer would learn to use these cues to extract more advanced features; and so on until
the last layer, which infers the desired output (such as predicted class or detection results).

However, deep learning only really started being used from 2006, when Geoff Hinton and
his colleagues proposed an effective solution to train these deeper models, one layer at a
time, until reaching the desired depth (A Fast Learning Algorithm for Deep Belief Nets, MIT
Press, 2006).
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Deep learning era
With research into neural networks once again back on track, deep learning started
growing, until a major breakthrough in 2012, which finally gave it its contemporary
prominence. Since the publication of ImageNet, a competition (ImageNet Large Scale
Visual Recognition Challenge (ILSVRC)—image-net.org/challenges/LSVRC) has
been organized every year for researchers to submit their latest classification algorithms
and compare their performance on ImageNet with others. The winning solutions in 2010
and 2011 had classification errors of 28% and 26% respectively, and applied traditional
concepts such as SIFT features and SVMs. Then came the 2012 edition, and a new team of
researchers reduced the recognition error to a staggering 16%, leaving all the other
contestants far behind.

In their paper describing this achievement (Imagenet Classification with Deep Convolutional
Neural Networks, NIPS, 2012), Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton presented
what would become the basis for modern recognition methods. They conceived an 8-layer
neural network, later named AlexNet, with several convolutional layers and other modern
components such as dropout and rectified linear activation units (ReLUs), which will all
be presented in detail in Chapter 3, Modern Neural Networks, as they have became central to
computer vision. More importantly, they used CUDA to implement their method so that it
can be run on GPUs, finally making it possible to train deep neural networks in a
reasonable time, iterating over datasets as big as ImageNet.

That same year, Google demonstrated how advances in cloud computing could also be
applied to computer vision. Using a dataset of 10 million random images extracted from
YouTube videos, they taught a neural network to identify images containing cats and
parallelized the training process over 16,000 machines to finally double the accuracy
compared to previous methods.

And so started the deep learning era we are currently in. Everyone jumped on board,
coming up with deeper and deeper models, more advanced training schemes, and lighter
solutions for portable devices. It is an exciting period, as the more efficient deep learning
solutions become, the more people try to apply them to new applications and domains.
With this book, we hope to convey some of this current enthusiasm and provide you with
an overview of the modern methods and how to develop solutions.

http://image-net.org/challenges/LSVRC/


Computer Vision and Neural Networks Chapter 1

[ 27 ]

Getting started with neural networks
By now, we know that neural networks form the core of deep learning and are powerful
tools for modern computer vision. But what are they exactly? How do they work? In the
following section, not only will we tackle the theoretical explanations behind their
efficiency, but we will also directly apply this knowledge to the implementation and
application of a simple network to a recognition task.

Building a neural network
Artificial neural networks (ANNs), or simply neural networks (NNs), are powerful 
machine learning tools that are excellent at processing information, recognizing usual
patterns or detecting new ones, and approximating complex processes. They have to thank
their structure for this, which we will now explore.

Imitating neurons
It is well-known that neurons are the elemental supports of our thoughts and reactions.
What might be less evident is how they actually work and how they can be simulated.

Biological inspiration
ANNs are loosely inspired by how animals' brains work. Our brain is a complex network of
neurons, each passing information to each other and processing sensory inputs (as electrical
and chemical signals) into thoughts and actions. Each neuron receives its electrical inputs
from its dendrites, which are cell fibers that propagate the electrical signal from the synapses
(the junctions with preceding neurons) to the soma (the neuron's main body). If the
accumulated electrical stimulation exceeds a specific threshold, the cell is activated and the
electrical impulse is propagated further to the next neurons through the cell's axon (the
neuron's output cable, ending with several synapses linking to other neurons). Each neuron
can, therefore, be seen as a really simple signal processing unit, which—once stacked
together—can achieve the thoughts we are having right now, for instance.



Computer Vision and Neural Networks Chapter 1

[ 28 ]

Mathematical model
Inspired by its biological counterpart (represented in Figure 1.11), the artificial neuron takes
several inputs (each a number), sums them together, and finally applies an activation
function to obtain the output signal, which can be passed to the following neurons in the
network (this can be seen as a directed graph):

Figure 1.11: On the left, we can see a simplified biological neuron. On the right, we can see its artificial counterpart

The summation of the inputs is usually done in a weighted way. Each input is scaled up or
down, depending on a weight specific to this particular input. These weights are the
parameters that are adjusted during the training phase of the network in order for the
neuron to react to the correct features. Often, another parameter is also trained and used for
this summation process—the neuron's bias. Its value is simply added to the weighted sum
as an offset.
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Let's quickly formalize this process mathematically. Suppose we have a neuron that takes
two input values, x0 and x1. Each of these values would be weighted by a factor, w0 and w1,
respectively, before being summed together, with an optional bias, b. For simplification, we
can express the input values as a horizontal vector, x, and the weights as a vertical
vector, w:

With this formulation, the whole operation can simply be expressed as follows:

This step is straightforward, isn't it? The dot product between the two vectors takes care of
the weighted summation:

Now that the inputs have been scaled and summed together into the result, z, we have to
apply the activation function to it in order to get the neuron's output. If we go back to the
analogy with the biological neuron, its activation function would be a binary function such
as if y is above a threshold t, return an electrical impulse that is 1, or else return 0 (with t = 0
usually). If we formalize this, the activation function, y = f(z), can be expressed as follows:

The step function is a key component of the original perceptron, but more advanced
activation functions have been introduced since then with more advantageous properties,
such as non-linearity (to model more complex behaviors) and continuous differentiability
(important for the training process, which we will explain later). The most common
activation functions are as follows:

The sigmoid function,   (with 𝑒 the exponential function)



Computer Vision and Neural Networks Chapter 1

[ 30 ]

The hyperbolic tangent, 

The REctified Linear Unit (ReLU),  

Plots of the aforementioned common activation functions are shown in the following
diagram:

Figure 1.12: Plotting common activation functions

In any case, that's it! We have modeled a simple artificial neuron. It is able to receive a
signal, process it, and output a value that can be forwarded (a term that is commonly used in
machine learning) to other neurons, building a network.

Chaining neurons with no non-linear activation functions would be
equivalent to having a single neuron. For instance, if we had a linear
neuron with parameters wA and bA followed by a linear neuron with
parameters wB and bB, then 

, where w
= wAwB and b = bA + bB. Therefore, non-linear activation functions are a
necessity if we want to create complex models.

Implementation
Such a model can be implemented really easily in Python (using NumPy for vector and
matrix manipulations):

import numpy as np

class Neuron(object):
    """A simple feed-forward artificial neuron.
    Args:
        num_inputs (int): The input vector size / number of input values.
        activation_fn (callable): The activation function.
    Attributes:
        W (ndarray): The weight values for each input.
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        b (float): The bias value, added to the weighted sum.
        activation_fn (callable): The activation function.
    """
    def __init__(self, num_inputs, activation_fn):
        super().__init__()
        # Randomly initializing the weight vector and bias value:
        self.W = np.random.rand(num_inputs)
        self.b = np.random.rand(1)
        self.activation_fn = activation_fn

    def forward(self, x):
        """Forward the input signal through the neuron."""
        z = np.dot(x, self.W) + self.b
        return self.activation_function(z)

As we can see, this is a direct adaptation of the mathematical model we defined previously.
Using this artificial neuron is just as straightforward. Let's instantiate a perceptron (a
neuron with the step function for the activation method) and forward a random input
through it:

# Fixing the random number generator's seed, for reproducible results:
np.random.seed(42)
# Random input column array of 3 values (shape = `(1, 3)`)
x = np.random.rand(3).reshape(1, 3)
# > [[0.37454012 0.95071431 0.73199394]]

# Instantiating a Perceptron (simple neuron with step function):
step_fn = lambda y: 0 if y <= 0 else 1
perceptron = Neuron(num_inputs=x.size, activation_fn=step_fn)
# > perceptron.weights    = [0.59865848 0.15601864 0.15599452]
# > perceptron.bias       = [0.05808361]

out = perceptron.forward(x)
# > 1

We suggest that you take some time and experiment with different inputs and neuron
parameters before we scale up their dimensions in the next section.

Layering neurons together
Usually, neural networks are organized into layers, that is, sets of neurons that typically
receive the same input and apply the same operation (for example, by applying the same
activation function, though each neuron first sums the inputs with its own specific
weights).
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Mathematical model
In networks, the information flows from the input layer to the output layer, with one or
more hidden layers in-between. In Figure 1.13, the three neurons A, B, and C belong to the
input layer, the neuron H belongs to the output or activation layer, and the neurons D, E, F,
and G belong to the hidden layer. The first layer has an input, x, of size 2, the second
(hidden) layer takes the three activation values of the previous layer as input, and so on.
Such layers, with each neuron connected to all the values from the previous layer, are
classed as being fully connected or dense:

Figure 1.13: A 3-layer neural network, with two input values and one final output

Once again, we can compact the calculations by representing these elements with vectors
and matrices. The following operations are done by the first layers:

This can be expressed as follows:
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In order to obtain the previous equation, we must define the variables as follows:

The activation of the first layer can, therefore, be written as a vector, 
, which can be directly passed as an input vector to the

next layer, and so on until the last layer.

Implementation
Like the single neuron, this model can be implemented in Python. Actually, we do not even
have to make too many edits compared to our Neuron class:

import numpy as np

class FullyConnectedLayer(object):
    """A simple fully-connected NN layer.
    Args:
        num_inputs (int): The input vector size/number of input values.
        layer_size (int): The output vector size/number of neurons.
        activation_fn (callable): The activation function for this layer.
    Attributes:
        W (ndarray): The weight values for each input.
        b (ndarray): The bias value, added to the weighted sum.
        size (int): The layer size/number of neurons.
        activation_fn (callable): The neurons' activation function.
    """
    def __init__(self, num_inputs, layer_size, activation_fn):
        super().__init__()
        # Randomly initializing the parameters (using a normal distribution
this time):
        self.W = np.random.standard_normal((num_inputs, layer_size))
        self.b = np.random.standard_normal(layer_size)
        self.size = layer_size
        self.activation_fn = activation_fn

    def forward(self, x):
        """Forward the input signal through the layer."""
        z = np.dot(x, self.W) + self.b
        return self.activation_fn(z)
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We just have to change the dimensionality of some of the variables in order to reflect the
multiplicity of neurons inside a layer. With this implementation, our layer can even process
several inputs at once! Passing a single column vector x (of shape 1 × s with s number of
values in x) or a stack of column vectors (of shape n × s with n number of samples) does not
change anything with regard to our matrix calculations, and our layer will correctly output
the stacked results (assuming b is added to each row):

np.random.seed(42)
# Random input column-vectors of 2 values (shape = `(1, 2)`):
x1 = np.random.uniform(-1, 1, 2).reshape(1, 2)
# > [[-0.25091976  0.90142861]]
x2 = np.random.uniform(-1, 1, 2).reshape(1, 2)
# > [[0.46398788 0.19731697]]

relu_fn = lambda y: np.maximum(y, 0)    # Defining our activation function
layer = FullyConnectedLayer(2, 3, relu_fn)

# Our layer can process x1 and x2 separately...
out1 = layer.forward(x1)
# > [[0.28712364 0.         0.33478571]]
out2 = layer.forward(x2)
# > [[0.         0.         1.08175419]]
# ... or together:
x12 = np.concatenate((x1, x2))  # stack of input vectors, of shape `(2, 2)`
out12 = layer.forward(x12)
# > [[0.28712364 0.         0.33478571]
#    [0.         0.         1.08175419]]

A stack of input data is commonly called a batch.

With this implementation, it is now just a matter of chaining fully connected layers together
to build simple neural networks.

Applying our network to classification
We know how to define layers, but have yet to initialize and connect them into networks
for computer vision. To demonstrate how to do this, we will tackle a famous recognition
task.
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Setting up the task
Classifying images of handwritten digits (that is, recognizing whether an image contains a
0 or a 1 and so on) is a historical problem in computer vision. The Modified National
Institute of Standards and Technology (MNIST) dataset (http:/ /yann. lecun. com/ exdb/
mnist/), which contains 70,000 grayscale images (28 × 28 pixels) of such digits, has been 
used as a reference over the years so that people can test their methods for this recognition
task (Yann LeCun and Corinna Cortes hold all copyrights for this dataset, which is shown
in the following diagram):

Figure 1.14: Ten samples of each digit from the MNIST dataset

For digit classification, what we want is a network that takes one of these images as input
and returns an output vector expressing how strongly the network believes the image
corresponds to each class. The input vector has 28 × 28 = 784 values, while the output has 10
values (for the 10 different digits, from 0 to 9). In-between all of this, it is up to us to define
the number of hidden layers and their sizes. To predict the class of an image, it is then just a
matter of forwarding the image vector through the network, collecting the output, and returning
the class with the highest belief score.

These belief scores are commonly transformed into probabilities to
simplify further computations or the interpretation. For instance, let's
suppose that a classification network gives a score of 9 to the class dog,
and a score of 1 to the other class, cat. This is equivalent to saying that
according to this network, there is a 9/10 probability that the image shows a dog
and a 1/10 probability it shows a cat.
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Before we implement a solution, let's prepare the data by loading the MNIST data for
training and testing methods. For simplicity, we will use the mnist Python module
(https://github.com/ datapythonista/ mnist), which was developed by Marc Garcia
(under the BSD 3-Clause New or Revised license, and is already installed in this chapter's
source directory):

import numpy as np
import mnist
np.random.seed(42)

# Loading the training and testing data:
X_train, y_train = mnist.train_images(), mnist.train_labels()
X_test,  y_test  = mnist.test_images(), mnist.test_labels()
num_classes = 10    # classes are the digits from 0 to 9

# We transform the images into column vectors (as inputs for our NN):
X_train, X_test = X_train.reshape(-1, 28*28), X_test.reshape(-1, 28*28)
# We "one-hot" the labels (as targets for our NN), for instance, transform
label `4` into vector `[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]`:
y_train = np.eye(num_classes)[y_train]

More detailed operations for the preprocessing and visualization of the
dataset can be found in this chapter's source code.

Implementing the network
For the neural network itself, we have to wrap the layers together and add some methods
to forward through the complete network and to predict the class according to the output
vector. After the layer's implementation, the following code should be self-explanatory:

import numpy as np
from layer import FullyConnectedLayer

def sigmoid(x): # Apply the sigmoid function to the elements of x.
    return 1 / (1 + np.exp(-x)) # y

class SimpleNetwork(object):
    """A simple fully-connected NN.
    Args:
        num_inputs (int): The input vector size / number of input values.
        num_outputs (int): The output vector size.
        hidden_layers_sizes (list): A list of sizes for each hidden layer
to be added to the network
    Attributes:

https://github.com/datapythonista/mnist
https://github.com/datapythonista/mnist
https://github.com/datapythonista/mnist
https://github.com/datapythonista/mnist
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https://github.com/datapythonista/mnist
https://github.com/datapythonista/mnist
https://github.com/datapythonista/mnist
https://github.com/datapythonista/mnist
https://github.com/datapythonista/mnist
https://github.com/datapythonista/mnist
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        layers (list): The list of layers forming this simple network.
    """

    def __init__(self, num_inputs, num_outputs, hidden_layers_sizes=(64,
32)):
        super().__init__()
        # We build the list of layers composing the network:
        sizes = [num_inputs, *hidden_layers_sizes, num_outputs]
        self.layers = [
            FullyConnectedLayer(sizes[i], sizes[i + 1], sigmoid)
            for i in range(len(sizes) - 1)]

    def forward(self, x):
        """Forward the input vector `x` through the layers."""
        for layer in self.layers: # from the input layer to the output one
            x = layer.forward(x)
        return x

    def predict(self, x):
        """Compute the output corresponding to `x`, and return the index of
the largest output value"""
        estimations = self.forward(x)
        best_class = np.argmax(estimations)
        return best_class

    def evaluate_accuracy(self, X_val, y_val):
        """Evaluate the network's accuracy on a validation dataset."""
        num_corrects = 0
        for i in range(len(X_val)):
            if self.predict(X_val[i]) == y_val[i]:
                num_corrects += 1
        return num_corrects / len(X_val)

We just implemented a feed-forward neural network that can be used for classification! It is
now time to apply it to our problem:

# Network for MNIST images, with 2 hidden layers of size 64 and 32:
mnist_classifier = SimpleNetwork(X_train.shape[1], num_classes, [64, 32])

# ... and we evaluate its accuracy on the MNIST test set:
accuracy = mnist_classifier.evaluate_accuracy(X_test, y_test)
print("accuracy = {:.2f}%".format(accuracy * 100))
# > accuracy = 12.06%



Computer Vision and Neural Networks Chapter 1

[ 38 ]

We only got an accuracy of ~12.06%. This may look disappointing since it is an accuracy
that's barely better than random guessing. But it makes sense—right now, our network is
defined by random parameters. We need to train it according to our use case, which is a
task that we will tackle in the next section.

Training a neural network
Neural networks are a particular kind of algorithm because they need to be trained, that is,
their parameters need to be optimized for a specific task by making them learn from
available data. Once the networks are optimized to perform well on this training dataset,
they can be used on new, similar data to provide satisfying results (if the training was done
properly).

Before solving the problem of our MNIST task, we will provide some theoretical
background, cover different learning strategies, and present how training is actually done.
Then, we will directly apply some of these notions to our example so that our simple
network finally learns how to solve the recognition task!

Learning strategies
When it comes to teaching neural networks, there are three main paradigms, depending on
the task and the availability of training data.

Supervised learning
Supervised learning may be the most common paradigm, and it is certainly the easiest to
grasp. It applies when we want to teach neural networks a mapping between two modalities (for
example, mapping images to their class labels or to their semantic masks). It requires access
to a training dataset containing both the images and their ground truth labels (such as the
class information per image or the semantic masks).

With this, the training is then straightforward:

Give the images to the network and collect its results (that is, predicted labels).
Evaluate the network's loss, that is, how wrong its predictions are when
comparing it to the ground truth labels.
Adjust the network parameters accordingly to reduce this loss.
Repeat until the network converges, that is, until it cannot improve further on this
training data.
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Therefore, this strategy deserves the adjective supervised—an entity (us) supervises the
training of the network by providing it with feedback for each prediction (the loss
computed from the ground truths) so that the method can learn by repetition (it was
correct/false; try again).

Unsupervised learning
However, how do we train a network when we do not have any ground truth information
available? Unsupervised learning is one answer to this. The idea here is to craft a function
that computes the network's loss only based on its input and its corresponding output.

This strategy applies very well to applications such as clustering (grouping images with
similar properties together) or compression (reducing the content size while preserving
some properties). For clustering, the loss function could measure how similar images from
one cluster are compared to images from other clusters. For compression, the loss function
could measure how well preserved the important properties are in the compressed data
compared to the original ones.

Unsupervised learning thus requires some expertise regarding the use cases so that we can
come up with meaningful loss functions.

Reinforcement learning
Reinforcement learning is an interactive strategy. An agent navigates through an environment
(for example, a robot moving around a room or a video game character going through a
level). The agent has a predefined list of actions it can make (walk, turn, jump, and so on)
and, after each action, it ends up in a new state. Some states can bring rewards, which are
immediate or delayed, and positive or negative (for instance, a positive reward when the
video game character touches a bonus item, and a negative reward when it is hit by an
enemy). 

At each instant, the neural network is provided only with observations from the
environment (for example, the robot's visual feed, or the video game screen) and reward
feedback (the carrot and stick). From this, it has to learn what brings higher rewards
and estimate the best short-term or long-term policy for the agent accordingly. In other words, it
has to estimate the series of actions that would maximize its end reward.
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Reinforcement learning is a powerful paradigm, but it is less commonly applied to
computer vision use cases. It won't be presented further here, though we encourage
machine learning enthusiasts to learn more.

Teaching time
Whatever the learning strategy, the overall training steps are the same. Given some training
data, the network makes its predictions and receives some feedback (such as the results of a
loss function), which is then used to update the network's parameters. These steps are then
repeated until the network cannot be optimized further. In this section, we will detail and
implement this process, from loss computation to weights optimization.

Evaluating the loss
The goal of the loss function is to evaluate how well the network, with its current weights, is
performing. More formally, this function expresses the quality of the predictions as a function
of the network's parameters (such as its weights and biases). The smaller the loss, the better
the parameters are for the chosen task.

Since loss functions represent the goal of networks (return the correct labels, compress the
image while preserving the content, and so on), there are as many different functions as there
are tasks. Still, some loss functions are more commonly used than others. This is the case for
the sum-of-squares function, also called L2 loss (based on the L2 norm), which is 
omnipresent in supervised learning. This function simply computes the squared difference
between each element of the output vector y (the per-class probabilities estimated by our
network) and each element of the ground truth vector ytrue (the target vector with null
values for every class but the correct one):

There are plenty of other losses with different properties, such as L1 loss, which computes
the absolute difference between the vectors, or binary cross-entropy (BCE) loss, which
converts the predicted probabilities into a logarithmic scale before comparing them to the
expected values:
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The logarithmic operation converts the probabilities from [0, 1] into [- ,
0]. So, by multiplying the results by -1, the loss value moves from +   to 0
as the neural network learns to predict properly. Note that the cross-
entropy function can also be applied to multi-class problems (not just
binary).

It is also common for people to divide the losses by the number of
elements in the vectors, that is, computing the mean instead of the sum.
The mean square error (MSE) is the averaged version of the L2 loss, and
the mean absolute error (MAE) is the average version of the L1 loss.

For now, we will stick with the L2 loss as an example. We will use it for the rest of the 
theoretical explanations, as well as to train our MNIST classifier.

Backpropagating the loss
How can we update the network parameters so that they minimize the loss? For each
parameter, what we need to know is how slightly changing its value would affect the loss.
If we know which changes would slightly decrease the loss, then it is just a matter of
applying these changes and repeating the process until reaching a minimum. This is exactly
what the gradient of the loss function expresses, and what the gradient descent process is.

At each training iteration, the derivatives of the loss with respect to each parameter of the
network are computed. These derivatives indicate which small changes to the parameters
need to be applied (with a -1 coefficient since the gradient indicates the direction of increase
of the function, while we want to minimize it). It can be seen as walking step by step down
the slope of the loss function with respect to each parameter, hence the name gradient
descent for this iterative process (refer to the following diagram):

Figure 1.15: Illustrating the gradient descent to optimize a parameter P of the neural network
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The question now is, how can we compute all of these derivatives (the slope values as a
function of each parameter)? This is where the chain rule comes to our aid. Without going
too deep into calculus, the chain rule tells us that the derivatives with respect to the
parameters of a layer, k, can be simply computed with the input and output values of that
layer (xk, yk), and the derivatives of the following layer, k + 1. More formally, for the layer's
weights, Wk, we have the following:

Here, l'k+1 is the derivative that is computed for layer k + 1 with respect to its input, xk+1 = yk,
with f'k being the derivative of the layer's activation function, and  being the transpose of
x. Note that zk represents the result of the weighted sum performed by the layer k (that is,
before the input of the layer's activation function), as defined in the Layering neurons
together section. Finally, the  symbol represents the element-wise multiplication between two
vectors/matrices. It is also known as the Hadamard product. As shown in the following
equation, it basically consists of multiplying the elements pair-wise:

Back to the chain rule, the derivatives with respect to the bias can be computed in a similar
fashion, as follows:

Finally, to be exhaustive, we have the following equation:
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These calculations may look complex, but we only need to understand what they
represent—we can compute how each parameter affects the loss recursively, layer by layer,
going backward (using the derivatives for a layer to compute the derivatives for the
previous layer). This concept can also be illustrated by representing neural networks as
computational graphs, that is, as graphs of mathematical operations chained together (the
weighted summation of the first layer is performed and its result is passed to the first
activation function, then its own output is passed to the operations of the second layer, and
so on). Therefore, computing the result of a whole neural network with respect to some
inputs consists of forwarding the data through this computational graph, while obtaining the
derivatives with respect to each of its parameters consists of propagating the resulting loss
through the graph backward, hence the term backpropagation.

To start this process by the output layer, the derivatives of the loss itself with respect to the
output values are needed (refer to the previous equation). Therefore, it is primordial that
the loss function can be easily derived. For instance, the derivative of the L2 loss is simply
the following:

As we mentioned earlier, once we know the loss derivatives with respect to each parameter,
it is just a matter of updating them accordingly:

As we can see, the derivatives are often multiplied by a factor  (epsilon) before being used
to update the parameters. This factor is called the learning rate. It helps to control how 
strongly each parameter should be updated at each iteration. A large learning rate may
allow the network to learn faster, but with the risk of making steps so big that the network
may miss the loss minimum. Therefore, its value should be set with care. Let's now
summarize the complete training process:

Select the n next training images and feed them to the network.1.
Compute and backpropagate the loss, using the chain rule to get the derivatives2.
with respect to the parameters of the layers.
Update the parameters with the values of the corresponding derivatives (scaled3.
with the learning rate).
Repeat steps 1 to 3 to iterate over the whole training set.4.
Repeat steps 1 to 4 until convergence or until a fixed number of iterations.5.
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One iteration over the whole training set (steps 1 to 4) is called an epoch. If n = 1 and the 
training sample is randomly selected among the remaining images, this process is called
stochastic gradient descent (SGD), which is easy to implement and visualize, but slower
(more updates are done) and noisier. People tend to prefer mini-batch stochastic gradient
descent. It implies using larger n values (limited by the capabilities of the computer) so that
the gradient is averaged over each mini-batch (or, more simply, named batch) of n random
training samples (and is thus less noisy).

Nowadays, the term SGD is commonly used, regardless of the value of n.

In this section, we have covered how neural networks are trained. It is now time to put this
into practice!

Teaching our network to classify
So far, we have only implemented the feed-forward functionality for our network and its
layers. First, let's update our FullyConnectedLayer class so that we can add methods for
backpropagation and optimization:

class FullyConnectedLayer(object):
    # [...] (code unchanged)
    def __init__(self, num_inputs, layer_size, activation_fn,
d_activation_fn):
        # [...] (code unchanged)
        self.d_activation_fn = d_activation_fn # Deriv. activation function
        self.x, self.y, self.dL_dW, self.dL_db = 0, 0, 0, 0 # Storage attr.

    def forward(self, x):
        z = np.dot(x, self.W) + self.b
        self.y = self.activation_fn(z)
        self.x = x  # we store values for back-propagation
        return self.y

    def backward(self, dL_dy):
        """Back-propagate the loss."""
        dy_dz = self.d_activation_fn(self.y)  # = f'
        dL_dz = (dL_dy * dy_dz) # dL/dz = dL/dy * dy/dz = l'_{k+1} * f'
        dz_dw = self.x.T
        dz_dx = self.W.T
        dz_db = np.ones(dL_dy.shape[0]) # dz/db = "ones"-vector
        # Computing and storing dL w.r.t. the layer's parameters:
        self.dL_dW = np.dot(dz_dw, dL_dz)
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        self.dL_db = np.dot(dz_db, dL_dz)
        # Computing the derivative w.r.t. x for the previous layers:
        dL_dx = np.dot(dL_dz, dz_dx)
        return dL_dx

    def optimize(self, epsilon):
        """Optimize the layer's parameters w.r.t. the derivative values."""
        self.W -= epsilon * self.dL_dW
        self.b -= epsilon * self.dL_db

The code presented in this section has been simplified and stripped of
comments to keep its length reasonable. The complete sources are
available in this book's GitHub repository, along with a Jupyter notebook
that connects everything together.

Now, we need to update the SimpleNetwork class by adding methods to backpropagate
and optimize layer by layer, and a final method to cover the complete training:

def derivated_sigmoid(y):  # sigmoid derivative function
    return y * (1 - y)

def loss_L2(pred, target): # L2 loss function
    return np.sum(np.square(pred - target)) / pred.shape[0] # opt. for
results not depending on the batch size (pred.shape[0]), we divide the loss
by it

def derivated_loss_L2(pred, target):    # L2 derivative function
    return 2 * (pred - target) # we could add the batch size division here
too, but it wouldn't really affect the training (just scaling down the
derivatives).

class SimpleNetwork(object):
 # [...] (code unchanged)
 def __init__(self, num_inputs, num_outputs, hidden_layers_sizes=(64, 32),
loss_fn=loss_L2, d_loss_fn=derivated_loss_L2):
        # [...] (code unchanged, except for FC layers new params.)
        self.loss_fn, self.d_loss_fn = loss_fn, d_loss_fn

    # [...] (code unchanged)

    def backward(self, dL_dy):
        """Back-propagate the loss derivative from last to 1st layer."""
        for layer in reversed(self.layers):
            dL_dy = layer.backward(dL_dy)
        return dL_dy

 def optimize(self, epsilon):



Computer Vision and Neural Networks Chapter 1

[ 46 ]

        """Optimize the parameters according to the stored gradients."""
        for layer in self.layers:
            layer.optimize(epsilon)

    def train(self, X_train, y_train, X_val, y_val, batch_size=32,
num_epochs=5, learning_rate=5e-3):
        """Train (and evaluate) the network on the provided dataset."""
        num_batches_per_epoch = len(X_train) // batch_size
        loss, accuracy = [], []
        for i in range(num_epochs): # for each training epoch
            epoch_loss = 0
            for b in range(num_batches_per_epoch): # for each batch
                # Get batch:
                b_idx = b * batch_size
                b_idx_e = b_idx + batch_size
                x, y_true = X_train[b_idx:b_idx_e], y_train[b_idx:b_idx_e]
                # Optimize on batch:
                y = self.forward(x) # forward pass
                epoch_loss += self.loss_fn(y, y_true) # loss
                dL_dy = self.d_loss_fn(y, y_true) # loss derivation
                self.backward(dL_dy) # back-propagation pass
                self.optimize(learning_rate) # optimization
            loss.append(epoch_loss / num_batches_per_epoch)
            # After each epoch, we "validate" our network, i.e., we measure
its accuracy over the test/validation set:
            accuracy.append(self.evaluate_accuracy(X_val, y_val))
            print("Epoch {:4d}: training loss = {:.6f} | val accuracy =
{:.2f}%".format(i, loss[i], accuracy[i] * 100))

Everything is now ready! We can train our model and see how it performs:

losses, accuracies = mnist_classifier.train(
    X_train, y_train, X_test, y_test, batch_size=30, num_epochs=500)
# > Epoch    0: training loss = 1.096978 | val accuracy = 19.10%
# > Epoch    1: training loss = 0.886127 | val accuracy = 32.17%
# > Epoch    2: training loss = 0.785361 | val accuracy = 44.06%
# [...]
# > Epoch  498: training loss = 0.046022 | val accuracy = 94.83%
# > Epoch  499: training loss = 0.045963 | val accuracy = 94.83%

Congratulations! If your machine is powerful enough to complete this training (this simple
implementation does not take advantage of the GPU), we just obtained our very own
neural network that is able to classify handwritten digits with an accuracy of ~94.8%!
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Training considerations – underfitting and overfitting
We invite you to play around with the framework we just implemented, trying different
hyperparameters (layer sizes, learning rate, batch size, and so on). Choosing the proper
topography (as well as other hyperparameters) can require lots of tweaking and testing.
While the sizes of the input and output layers are conditioned by the use case (for example,
for classification, the input size would be the number of pixel values in the images, and the
output size would be the number of classes to predict from), the hidden layers should be
carefully engineered.

For instance, if the network has too few layers, or the layers are too small, the accuracy may
stagnate. This means the network is underfitting, that is, it does not have enough
parameters for the complexity of the task. In this case, the only solution is to adopt a new
architecture that is more suited to the application.

On the other hand, if the network is too complex and/or the training dataset is too small,
the network may start overfitting the training data. This means that the network will learn
to fit very well to the training distribution (that is, its particular noise, details, and so on),
but won't generalize to new samples (since these new images may have a slightly different
noise, for instance). The following diagram highlights the differences between these two
problems. The regression method on the extreme left does not have enough parameters to
model the data variations, while the method on the extreme right has too many, which
means it will struggle to generalize:

Figure 1.16: A common illustration of underfitting and overfitting

While gathering a larger, more diverse training dataset seems the logical solution to
overfitting, it is not always possible in practice (for example, due to limited access to the
target objects). Another solution is to adapt the network or its training in order to constrain
how much detail the network learns. Such methods will be detailed in Chapter 3, Modern
Neural Networks, among other advanced neural network solutions.
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Summary
We covered a lot of ground in this first chapter. We introduced computer vision, the
challenges associated with it, and some historical methods, such as SIFT and SVMs. We got
familiar with neural networks and saw how they are built, trained, and applied. After
implementing our own classifier network from scratch, we can now better understand and
appreciate how machine learning frameworks work.

With this knowledge, we are now more than ready to start with TensorFlow in the next
chapter.

Questions
Which of the following tasks does not belong to computer vision?1.

A web search for images similar to a query
A 3D scene reconstruction from image sequences
Animation of a video character

Which activation function were the original perceptrons using?2.
Suppose we want to train a method to detect whether a handwritten digit is a3.
4 or not. How should we adapt the network that we implemented in this chapter
for this task?

Further reading
Hands-On Image Processing with Python (https:/ /www. packtpub. com/ big-data-
and-business- intelligence/ hands- image- processing- python), by Sandipan
Dey: A great book to learn more about image processing itself, and how Python
can be used to manipulate visual data
OpenCV 3.x with Python By Example – Second Edition (https:/ /www. packtpub. com/
application- development/ opencv- 3x- python- example- second- edition), by
Gabriel Garrido and Prateek Joshi: Another recent book introducing the famous
computer vision library OpenCV, which has been around for years (it implements
some of the traditional methods we introduced in this chapter, such as edge
detectors, SIFT, and SVM)
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2
TensorFlow Basics and

Training a Model
TensorFlow is a numerical processing library used by researchers and machine learning
practitioners. While you can perform any numerical operation with TensorFlow, it is
mostly used to train and run deep neural networks. This chapter will introduce you to the
core concepts of TensorFlow 2 and walk you through a simple example.

The following topics will be covered in this chapter:

Getting started with TensorFlow 2 and Keras
Creating and training a simple computer vision model
TensorFlow and Keras core concepts
The TensorFlow ecosystem

Technical requirements
Throughout this book, we will use TensorFlow 2. You can find detailed installation
instructions for the different platforms at https:/ /www. tensorflow. org/ install.

If you plan on using your machine's GPU, make sure you install the corresponding version,
tensorflow-gpu. It must be installed along with the CUDA Toolkit, a library provided by
NVIDIA (https:/ /developer. nvidia. com/cuda- zone).

Installation instructions are also available in the README on GitHub at https:/ /github.
com/PacktPublishing/ Hands- On- Computer- Vision- with- TensorFlow- 2/ tree/ master/
Chapter02.
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Getting started with TensorFlow 2 and Keras
Before detailing the core concepts of TensorFlow, we will start with a brief introduction of
the framework and a basic example.

Introducing TensorFlow
TensorFlow was originally developed at Google to allow researchers and developers to
conduct machine learning research. It was originally defined as an interface for expressing
machine learning algorithms, and an implementation for executing such algorithms.

TensorFlow primarily offers to simplify the deployment of machine learning solutions on
various platforms—computer CPUs, computer GPUs, mobile devices, and, more recently,
in the browser. On top of that, TensorFlow offers many useful functions for creating
machine learning models and running them at scale. In 2019, TensorFlow 2 was released
with a focus on ease of use while maintaining good performance.

An introduction to TensorFlow 1.0's concepts is available
in Appendix, Migrating from TensorFlow 1 to TensorFlow 2 of this book.

The library was open sourced in November 2015. Since then, it has been improved and
used by users all around the world. It is considered one of the platforms of choice for
research. It is also one of the most active deep learning frameworks in terms of GitHub
activity.

TensorFlow can be used by beginners as well as experts. The TensorFlow API has different
levels of complexity, allowing newcomers to start with a simple API and experts to create
very complex models at the same time. Let's explore those different levels.

TensorFlow's main architecture
TensorFlow's architecture has several levels of abstraction. Let's first introduce the lowest
layer and find our way to the uppermost layer:
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Figure 2.1: Diagram of the TensorFlow architecture

Most deep learning computations are coded in C++. To run operations on the GPU,
TensorFlow uses a library developed by NVIDIA called CUDA. This is the reason you need
to install CUDA if you want to exploit GPU capabilities and why you cannot use GPUs
from another hardware manufacturer.

The Python low-level API then wraps the C++ sources. When you call a Python method in
TensorFlow, it usually invokes C++ code behind the scenes. This wrapper layer allows users
to work more quickly because Python is considered easier to use than C++ and does not
require compilation. This Python wrapper makes it possible to perform extremely basic
operations such as matrix multiplication and addition.

At the top sits the high-level API, made of two components—Keras and the Estimator API.
Keras is a user-friendly, modular, and extensible wrapper for TensorFlow. We will 
introduce it in the next section. The Estimator API contains several pre-made components
that allow you to build your machine learning model easily. You can consider them
building blocks or templates.

In deep learning, a model usually refers to a neural network that was
trained on data. A model is composed of an architecture, matrix weights,
and parameters.

Introducing Keras
First released in 2015, Keras was designed as an interface to enable fast experimentation
with neural networks. As such, it relied on TensorFlow or Theano (another deep learning
framework, now deprecated) to run deep learning operations. Known for its user-
friendliness, it was the library of choice for beginners.
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Since 2017, TensorFlow has integrated Keras fully, meaning that you can use it without
installing anything other than TensorFlow. Throughout this book, we will rely on
tf.keras instead of the standalone version of Keras. There are a few minor differences
between the two versions, such as compatibility with TensorFlow's other modules and the
way models are saved. For this reason, readers must make sure to use the correct version,
as follows:

In your code, import tf.keras and not keras.
Go through the tf.keras documentation on TensorFlow's website and not
the keras.io documentation.
When using external Keras libraries, make sure they are compatible with
tf.keras.
Some saved models might not be compatible between different versions of Keras.

The two versions will continue to co-exist for the foreseeable future, and tf.keras will
become more and more integrated with TensorFlow. To illustrate the power and simplicity
of Keras, we will now use it to implement a simple neural network.

A simple computer vision model using Keras
Before we delve into the core concepts of TensorFlow, let's start with a classical example of
computer vision—digit recognition with the Modified National Institute of Standards and
Technology (MNIST) dataset. The dataset was introduced in Chapter 1, Computer Vision
and Neural Networks.

Preparing the data
First, we import the data. It is made up of 60,000 images for the training set and 10,000
images for the test set:

import tensorflow as tf

num_classes = 10
img_rows, img_cols = 28, 28
num_channels = 1
input_shape = (img_rows, img_cols, num_channels)

(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
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It is common practice to import TensorFlow with the alias tf for faster
reading and typing. It is also common to use x to denote input data, and y
to represent labels.

The tf.keras.datasets module provides quick access to download and instantiate a
number of classical datasets. After importing the data using load_data, notice that we
divide the array by 255.0 to get a number in the range [0, 1] instead of [0, 255]. It is
common practice to normalize data, either in the [0, 1] range or in the [-1, 1] range.

Building the model
We can now move on to building the actual model. We will use a very simple architecture
composed of two fully connected (also called dense) layers. Before we explore the
architecture, let's have a look at the code. As you can see, Keras code is very concise:

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(num_classes, activation='softmax'))

Since our model is a linear stack of layers, we start by calling the Sequential function. We
then add each layer one after the other. Our model is composed of two fully connected
layers. We build it layer by layer:

Flatten: This will take the 2D matrix representing the image pixels and turn it
into a 1D array. We need to do this before adding a fully connected layer. The 28
× 28 images are turned into a vector of size 784.
Dense of size 128: This will turn the 784 pixel values into 128 activations using a
weight matrix of size 128 × 784 and a bias matrix of size 128. In total, this means
100,480 parameters.
Dense of size 10: This will turn the 128 activations into our final prediction.
Notice that because we want probabilities to sum to 1, we will use the softmax
activation function.

The softmax function takes the output of a layer and returns probabilities
that sum up to 1. It is the activation of choice for the last layer of a
classification model.
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Note that you can get a description of the model, the outputs, and their weights using
model.summary(). Here is the output:

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
flatten_1 (Flatten) (None, 784) 0
_________________________________________________________________
dense_1 (Dense) (None, 128) 100480
_________________________________________________________________
dense_2 (Dense) (None, 10) 1290
=================================================================
Total params: 101,770
Trainable params: 101,770
Non-trainable params: 0

With its architecture set and weights initialized, the model is now ready to be trained for
the chosen task.

Training the model
Keras makes training extremely simple:

model.compile(optimizer='sgd',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5, verbose=1, validation_data=(x_test,
y_test))

Calling .compile() on the model we just created is a mandatory step. A few arguments
must be specified:

optimizer: This is the component that will perform the gradient descent.
loss: This is the metric we will optimize. In our case, we choose cross-entropy,
just like in the previous chapter.
metrics: These are additional metric functions evaluated during training to
provide further visibility of the model's performance (unlike loss, they are not
used in the optimization process).
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The Keras loss named sparse_categorical_crossentropy performs the same cross-
entropy operation as categorical_crossentropy, but the former directly takes the
ground truth labels as inputs, while the latter requires the ground truth labels to be one-
hot encoded already before hand. Using the sparse_... loss thus saves us from manually
having to transform the labels.

Passing 'sgd' to Keras is equivalent to passing
tf.keras.optimizers.SGD(). The former option is easier to read,
while the latter makes it possible to specify parameters such as a custom
learning rate. The same goes for the loss, metrics, and most arguments
passed to Keras methods.

Then, we call the .fit() method. It is very similar to the interface used in scikit-learn,
another popular machine learning library. We will train for five epochs, meaning that we
will iterate over the whole train dataset five times.

Notice that we set verbose to 1. This will allow us to get a progress bar with the metrics
we chose earlier, the loss, and the Estimated Time of Arrival (ETA). The ETA is an estimate
of the remaining time before the end of the epoch. Here is what the progress bar looks like:

Figure 2.2: Screenshot of the progress bar displayed by Keras in verbose mode

Model performance
As described in Chapter 1, Computer Vision and Neural Networks, you will notice that our
model is overfitting—training accuracy is greater than test accuracy. If we train the model
for five epochs, we end up with an accuracy of 97% on the test set. This is about 2% better
than in the previous chapter, where we achieved 95%. State-of-the-art algorithms attain
99.79% accuracy.

We followed three main steps:

Loading the data: In this case, the dataset was already available. During future1.
projects, you may need additional steps to gather and clean the data.
Creating the model: This step was made easy by using Keras—we defined the2.
architecture of the model by adding sequential layers. Then, we selected a loss,
an optimizer, and a metric to monitor.
Training the model: Our model worked pretty well the first time. On more3.
complex datasets, you will usually need to fine-tune parameters during training.
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The whole process was extremely simple thanks to Keras, the high-level API of
TensorFlow. Behind this simple API, the library hides a lot of the complexity.

TensorFlow 2 and Keras in detail
We have introduced the general architecture of TensorFlow and trained our first model
using Keras. Let's now walk through the main concepts of TensorFlow 2. We will explain
several core concepts of TensorFlow that feature in this book, followed by some advanced
notions. While we may not employ all of them in the remainder of the book, you might find
it useful to understand some open source models that are available on GitHub or to get a
deeper understanding of the library.

Core concepts
Released in spring 2019, the new version of the framework is focused on simplicity and
ease of use. In this section, we will introduce the concepts that TensorFlow relies on and
cover how they evolved from version 1 to version 2.

Introducing tensors
TensorFlow takes its name from a mathematical object called a tensor. You can imagine
tensors as N-dimensional arrays. A tensor could be a scalar, a vector, a 3D matrix, or an N-
dimensional matrix.

A fundamental component of TensorFlow, the Tensor object is used to store mathematical
values. It can contain fixed values (created using tf.constant) or changing values
(created using tf.Variable).

In this book, tensor denotes the mathematical concept, while Tensor (with a
capital T) corresponds to the TensorFlow object.
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Each Tensor object has the following:

Type: string, float32, float16, or int8, among others.
Shape: The dimensions of the data. For instance, the shape would be () for a
scalar, (n) for a vector of size n, and (n, m) for a 2D matrix of size n × m.
Rank: The number of dimensions, 0 for a scalar, 1 for a vector, and 2 for a 2D
matrix.

Some tensors can have partially unknown shapes. For instance, a model accepting images
of variable sizes could have an input shape of (None, None, 3). Since the height and the
width of the images are not known in advance, the first two dimensions are set to None.
However, the number of channels (3, corresponding to red, blue, and green) is known and
is therefore set.

TensorFlow graphs
TensorFlow uses tensors as inputs as well as outputs. A component that transforms input
into output is called an operation. A computer vision model is therefore composed of
multiple operations.

TensorFlow represents these operations using a directed acyclic graph (DAC), also referred
to as a graph. In TensorFlow 2, graph operations have disappeared under the hood to make
the framework easier to use. Nevertheless, the graph concept remains important to
understand how TensorFlow really works.

When building the previous example using Keras, TensorFlow actually built a graph:

Figure 2.3: A simplified graph corresponding to our model. In practice, each node is composed of smaller operations (such as matrix multiplications and additions)
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While very simple, this graph represents the different layers of our model in the form of
operations. Relying on graphs has many advantages, allowing TensorFlow to do the
following:

Run part of the operations on the CPU and another part on the GPU
Run different parts of the graph on different machines in the case of a distributed
model
Optimize the graph to avoid unnecessary operations, leading to better
computational performance

Moreover, the graph concept allows TensorFlow models to be portable. A single graph
definition can be run on any kind of device.

In TensorFlow 2, graph creation is no longer handled by the user. While managing graphs
used to be a complex task in TensorFlow 1, the new version greatly improves usability
while still maintaining performance. In the next section, we will peek into the inner
workings of TensorFlow and briefly explore how graphs are created.

Comparing lazy execution to eager execution
The main change in TensorFlow 2 is eager execution. Historically, TensorFlow 1 
always used lazy execution by default. It is called lazy because operations are not run by
the framework until asked specifically to do so.

Let's start with a very simple example to illustrate the difference between lazy and eager
execution, summing the values of two vectors:

import tensorflow as tf

a = tf.constant([1, 2, 3])
b = tf.constant([0, 0, 1])
c = tf.add(a, b)

print(c)

Note that tf.add(a, b) could be replaced by a + b since TensorFlow
overloads many Python operators.
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The output of the previous code depends on the TensorFlow version. With TensorFlow 1
(where lazy execution is the default mode), the output would be this:

Tensor("Add:0", shape=(3,), dtype=int32)

However, with TensorFlow 2 (where eager execution is the default mode), you would get
the following output:

tf.Tensor([1 2 4], shape=(3,), dtype=int32)

In both cases, the output is a Tensor. In the second case, the operation has been run eagerly
and we can observe directly that the Tensor contains the result ([1 2 4]). In the first case,
the Tensor contains information about the addition operation (Add:0), but not the result of
the operation.

In eager mode, you can access the value of a Tensor by calling the
.numpy() method. In our example, calling c.numpy() returns [1 2 4]
(as a NumPy array).

In TensorFlow 1, more code would be needed to compute the result, making the
development process more complex. Eager execution makes code easier to debug (as
developers can peak at the value of a Tensor at any time) and easier to develop. In the next
section, we will detail the inner workings of TensorFlow and look at how it builds graphs.

Creating graphs in TensorFlow 2
We'll start with a simple example to illustrate graph creation and optimization:

def compute(a, b, c):
    d = a * b + c
    e = a * b * c
    return d, e

Assuming a, b, and c are Tensor matrices, this code computes two new values: d and e.
Using eager execution, TensorFlow would compute the value for d and then compute the
value for e.

Using lazy execution, TensorFlow would create a graph of operations. Before running the
graph to get the result, a graph optimizer would be run. To avoid computing a * b twice,
the optimizer would cache the result and reuse it when necessary. For more complex
operations, the optimizer could enable parallelism to make computation faster. Both
techniques are important when running large and complex models.



TensorFlow Basics and Training a Model Chapter 2

[ 60 ]

As we saw, running in eager mode implies that every operation is run when defined.
Therefore, such optimizations cannot be applied. Thankfully, TensorFlow includes a
module to work around this—TensorFlow AutoGraph.

Introducing TensorFlow AutoGraph and tf.function
The TensorFlow AutoGraph module makes it easy to turn eager code into a graph,
allowing automatic optimization. To do so, the easiest way is to add the tf.function
decorator on top of your function:

@tf.function
def compute(a, b, c):
    d = a * b + c
    e = a * b * c
    return d, e

A Python decorator is a concept that allows functions to be wrapped,
adding functionalities or altering them. Decorators start with an @ (the "at"
symbol).

When we call the compute function for the first time, TensorFlow will transparently create
the following graph:

Figure 2.4: The graph automatically generated by TensorFlow when calling the compute function for the first time
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TensorFlow AutoGraph can convert most Python statements, such as for loops, while
loops, if statements, and iterations. Thanks to graph optimizations, graph execution can
sometimes be faster than eager code. More generally, AutoGraph should be used in the
following scenarios:

When the model needs to be exported to other devices
When performance is paramount and graph optimizations can lead to speed
improvements

Another advantage of graphs is their automatic differentiation. Knowing the full list of
operations, TensorFlow can easily compute the gradient for each variable.

Note that in order to compute the gradient, the operations need to be
differentiable. Some of them, such as tf.math.argmax, are not. Using
them in a loss function will most likely cause the automatic
differentiation to fail. It is up to the user to make sure that the loss is
differentiable.

However, since, in eager mode, each operation is independent from one another, automatic
differentiation is not possible by default. Thankfully, TensorFlow 2 provides a way to
perform automatic differentiation while still using eager mode—the gradient tape.

Backpropagating errors using the gradient tape
The gradient tape allows easy backpropagation in eager mode. To illustrate this, we will
use a simple example. Let's assume that we want to solve the equation A × X = B, where A
and B are constants. We want to find the value of X to solve the equation. To do so, we will
try to minimize a simple loss, abs(A × X - B).

In code, this translates to the following:

A, B = tf.constant(3.0), tf.constant(6.0)
X = tf.Variable(20.0) # In practice, we would start with a random value
loss = tf.math.abs(A * X - B)

Now, to update the value of X, we would like to compute the gradient of the loss with
respect to X. However, when printing the content of the loss, we obtain the following:

<tf.Tensor: id=18525, shape=(), dtype=float32, numpy=54.0>

In eager mode, TensorFlow computed the result of the operation instead of storing the
operation! With no information on the operation and its inputs, it would be impossible to
automatically differentiate the loss operation.
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That is where the gradient tape comes in handy. By running our loss computation in the
context of tf.GradientTape, TensorFlow will automatically record all operations and
allow us to replay them backward afterward:

def train_step():
    with tf.GradientTape() as tape:
        loss = tf.math.abs(A * X - B)
    dX = tape.gradient(loss, X)
    print('X = {:.2f}, dX = {:2f}'.format(X.numpy(), dX))
    X.assign(X - dX)

for i in range(7):
    train_step()

The previous code defines a single training step. Every time train_step is called, the loss
is computed in the context of the gradient tape. The context is then used to compute the
gradient. The X variable is then updated. Indeed, we can see X converging toward the
value that solves the equation:

 X = 20.00, dX = 3.000000
 X = 17.00, dX = 3.000000
 X = 14.00, dX = 3.000000
 X = 11.00, dX = 3.000000
 X = 8.00, dX = 3.000000
 X = 5.00, dX = 3.000000
 X = 2.00, dX = 0.000000

You will notice that in the very first example of this chapter, we did not make use of the
gradient tape. This is because Keras models encapsulate training inside the .fit()
function—there's no need to update the variables manually. Nevertheless, for innovative
models or when experimenting, the gradient tape is a powerful tool that allows automatic
differentiation without much effort. Readers can find a more practical use of the gradient
tape in the regularization notebook of Chapter 3, Modern Neural Networks.

Keras models and layers
In the first section of this chapter, we built a simple Keras Sequential model. The resulting
Model object contains numerous useful methods and properties:

.inputs and .outputs: Provide access to the inputs and outputs of the model.

.layers: Lists the model's layers as well as their shape.

.summary(): Prints the architecture of the model.
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.save(): Saves the model, its architecture, and the current state of training. It is
very useful for resuming training later on. Models can be instantiated from a file
using tf.keras.models.load_model().
.save_weights(): Only saves the weights of the model.

While there is only one type of Keras model object, they can be built in a variety of ways.

Sequential and functional APIs
Instead of employing the Sequential API, like at the beginning of this chapter, you can 
instead use the functional API:

model_input = tf.keras.layers.Input(shape=input_shape)
output = tf.keras.layers.Flatten()(model_input)
output = tf.keras.layers.Dense(128, activation='relu')(output)
output = tf.keras.layers.Dense(num_classes, activation='softmax')(output)
model = tf.keras.Model(model_input, output)

Notice that the code is slightly longer than it previously was. Nevertheless, the functional
API is much more versatile and expressive than the Sequential API. The former allows for
branching models (that is, for building architectures with multiple parallel layers for
instance), while the latter can only be used for linear models. For even more flexibility,
Keras also offers the possibility to subclass the Model class, as described in Chapter 3,
Modern Neural Networks.

Regardless of how a Model object is built, it is composed of layers. A layer can be seen as a
node that accepts one or several inputs and returns one or several outputs, similar to a
TensorFlow operation. Its weights can be accessed using .get_weights() and set using
.set_weights(). Keras provides pre-made layers for the most common deep learning
operations. For more innovative or complex models, tf.keras.layers.Layer can also be
subclassed.

Callbacks
Keras callbacks are utility functions that you can pass to a Keras model's .fit() method
to add functionality to its default behavior. Multiple callbacks can be defined, which will be
called by Keras either before or after each batch iteration, each epoch, or the whole training
procedure. Predefined Keras callbacks include the following:

CSVLogger: Logs training information in a CSV file.
EarlyStopping: Stops training if the loss or a metric stops improving. It can be
useful in avoiding overfitting.
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LearningRateScheduler: Changes the learning rate on each epoch according
to a schedule.
ReduceLROnPlateau: Automatically reduces the learning rate when the loss or a
metric stops improving.

It is also possible to create custom callbacks by
subclassing tf.keras.callbacks.Callback, as demonstrated in later chapters and their
code samples.

Advanced concepts
In summary, the AutoGraph module, the tf.function decorator, and the gradient tape
context make graph creation and management very simple—if not invisible. However, a lot
of the complexity is hidden from the user. In this section, we will explore the inner
workings of these modules.

This section presents advanced concepts that are not required throughout
the book, but it may be useful for you to understand more complex
TensorFlow code. More impatient readers can skip this part and come
back to it later.

How tf.function works
As mentioned earlier, when calling a function decorated with tf.function for the first
time, TensorFlow will create a graph corresponding to the function's operations.
TensorFlow will then cache the graph so that the next time the function is called, graph
creation will not be necessary.

To illustrate this, let's create a simple identity function:

@tf.function
def identity(x):
  print('Creating graph !')
  return x

This function will print a message every time TensorFlow creates a graph corresponding to
its operation. In this case, since TensorFlow is caching the graph, it will print something
only the first time it is run:

x1 = tf.random.uniform((10, 10))
x2 = tf.random.uniform((10, 10))
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result1 = identity(x1) # Prints 'Creating graph !'
result2 = identity(x2) # Nothing is printed

However, note that if we change the input type, TensorFlow will recreate a graph:

x3 = tf.random.uniform((10, 10), dtype=tf.float16)
result3 = identity(x3) # Prints 'Creating graph !'

This behavior is explained by the fact that TensorFlow graphs are defined by their
operations and the shapes and types of the tensors they receive as inputs. Therefore, when
the input type changes, a new graph needs to be created. In TensorFlow vocabulary, when
a tf.function function has defined input types, it becomes a concrete function.

To summarize, every time a decorated function is run for the first time, TensorFlow caches
the graph corresponding to the input types and input shapes. If the function is run with
inputs of a different type, TensorFlow will create a new graph and cache it.

Nevertheless, it might be useful to log information every time a concrete function is run
and not just the first time. To do so, use tf.print:

@tf.function
def identity(x):
  tf.print("Running identity")
  return x

Instead of printing information only the first time, this function will print Running
identity every single time it is run.

Variables in TensorFlow 2
To hold the model weights, TensorFlow uses Variable instances. In our Keras example,
we can list the content of the model by accessing model.variables. It will return the list
of all variables contained in our model:

print([variable.name for variable in model.variables])
# Prints ['sequential/dense/kernel:0', 'sequential/dense/bias:0',
'sequential/dense_1/kernel:0', 'sequential/dense_1/bias:0']

In our example, variable management (including naming) has been entirely handled by
Keras. As we saw earlier, it is also possible to create our own variables:

a = tf.Variable(3, name='my_var')
print(a) # Prints <tf.Variable 'my_var:0' shape=() dtype=int32, numpy=3>
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Note that for large projects, it is recommended to name variables to clarify the code and
ease debugging. To change the value of a variable, use the Variable.assign method:

a.assign(a + 1)
print(a.numpy()) # Prints 4

Failing to use the .assign() method would create a new Tensor method:

b = a + 1
print(b) # Prints <tf.Tensor: id=21231, shape=(), dtype=int32, numpy=4>

Finally, deleting the Python reference to a variable will remove the object itself from the
active memory, releasing space for other variables to be created.

Distribution strategies
We trained a simple model on a very small dataset. When using larger models and datasets,
more computing power is necessary—this often implies multiple servers.
The tf.distribute.Strategy API defines how multiple machines communicate
together to train a model efficiently.

Some of the strategies defined by TensorFlow are as follows:

MirroredStrategy: For training on multiple GPUs on a single machine. Model
weights are kept in sync between each device.
MultiWorkerMirroredStrategy: Similar to MirroredStategy, but for
training on multiple machines.
ParameterServerStrategy: For training on multiple machines. Instead of
syncing the weights on each device, they are kept on a parameter server.
TPUStrategy: For training on Google's Tensor Processing Unit (TPU) chip.

The TPU is a custom chip made by Google, similar to a GPU, designed
specifically to run neural network computations. It is available through
Google Cloud.

To use a distribution strategy, create and compile your model in its scope:

mirrored_strategy = tf.distribute.MirroredStrategy()
with mirrored_strategy.scope():
  model = make_model() # create your model here
  model.compile([...])
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Note that you will probably have to increase the batch size, as each device will now receive
a small subset of each batch. Depending on your model, you may also have to change the
learning rate.

Using the Estimator API
We saw in the first part of this chapter that the Estimator API is a high-level alternative to
the Keras API. Estimators simplify training, evaluation, prediction, and serving.

There are two types of Estimators. Pre-made Estimators are very simple models provided
by TensorFlow, allowing you to quickly try out machine learning architectures. The second
type is custom Estimators, which can be created using any model architecture.

Estimators handle all the small details of a model's life cycle—data queues, exception
handling, recovering from failure, periodic checkpoints, and many more. While using
Estimators was considered best practice in TensorFlow 1, in version 2, it is recommended to
use the Keras API.

Available pre-made Estimators
At the time of writing, the available pre-made Estimators are DNNClassifier,
DNNRegressor, LinearClassifier, and LinearRegressor. Here, DNN stands for deep
neural network. Combined Estimators based on both architectures are also
available—DNNLinearCombinedClassifier and DNNLinearCombinedRegressor.

In machine learning, classification is the process of predicting a discrete
category, while regression is the process of predicting a continuous
number.

Combined Estimators, also called deep-n-wide models, make use of a linear model (for
memorization) and a deep model (for generalization). They are mostly used for
recommendation or ranking models.

Pre-made Estimators are suitable for some machine learning problems. However, they are
not suitable for computer vision problems, as there are no pre-made Estimators with
convolutions, a powerful type of layer described in the next chapter.
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Training a custom Estimator
The easiest way to create an Estimator is to convert a Keras model. After the model has
been compiled, call tf.keras.estimator.model_to_estimator():

estimator = tf.keras.estimator.model_to_estimator(model,
model_dir='./estimator_dir')

The model_dir argument allows you to specify a location where the checkpoints of the
model will be saved. As mentioned earlier, Estimators will automatically save checkpoints
for our models.

Training an Estimator requires the use of an input function—a function that returns data in
a specific format. One of the accepted formats is a TensorFlow dataset. The dataset API is
described in depth in Chapter 7, Training on Complex and Scarce Datasets. For now, we'll
define the following function, which returns the dataset defined in the first part of this
chapter in the correct format, in batches of 32 samples:

BATCH_SIZE = 32
def train_input_fn():
    train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
    train_dataset = train_dataset.batch(BATCH_SIZE).repeat()
    return train_dataset

Once this function is defined, we can launch the training with the Estimator:

estimator.train(train_input_fn, steps=len(x_train)//BATCH_SIZE)

Just like Keras, the training part is very simple, as Estimators handle the heavy lifting.

The TensorFlow ecosystem
In addition to the main library, TensorFlow offers numerous tools that are useful for
machine learning. While some of them are shipped with TensorFlow, others are grouped
under TensorFlow Extended (TFX) and TensorFlow Addons. We will now introduce the 
most commonly used tools.
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TensorBoard
While the progress bar we used in the first example of this chapter displayed useful
information, we might want to access more detailed graphs. TensorFlow provides a
powerful tool for monitoring—TensorBoard. Installed by default with TensorFlow, it is
also very easy to use when combined with Keras's callbacks:

callbacks = [tf.keras.callbacks.TensorBoard('./logs_keras')]
model.fit(x_train, y_train, epochs=5, verbose=1, validation_data=(x_test,
y_test), callbacks=callbacks)

In this updated code, we pass the TensorBoard callback to the model.fit() method. By
default, TensorFlow will automatically write the loss and the metrics to the folder we
specified. We can then launch TensorBoard from the command line:

$ tensorboard --logdir ./logs_keras

This command outputs a URL that we can then open to display the TensorBoard interface.
In the Scalars tab, we can find graphs displaying the loss and the accuracy:

Figure 2.5: Two graphs displayed by TensorBoard during training

As you will see in this book, training a deep learning model requires a lot of fine-tuning.
Therefore, it is essential to monitor how your model is performing. TensorBoard allows you
to do precisely this. The most common use case is to monitor the evolution of the loss of
your model over time. But you can also do the following:

Plot any metric (such as accuracy)
Display input and output images
Display the execution time
Draw your model's graph representation
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TensorBoard is very versatile, and there are many ways to use it. Each piece of information
is stored in tf.summary—this can be scalars, images, histograms, or text. For instance, to
log a scalar you might first create a summary writer and log information using the
following:

writer = tf.summary.create_file_writer('./model_logs')
with writer.as_default():
  tf.summary.scalar('custom_log', 10, step=3)

In the preceding code, we specify the step—it could be the epoch number, the batch
number, or custom information. It will correspond to the x axis in TensorBoard figures.
TensorFlow also provides tools for generating aggregates. To manually log accuracy, you
could use the following:

accuracy = tf.keras.metrics.Accuracy()
ground_truth, predictions = [1, 0, 1], [1, 0, 0] # in practice this would
come from the model
accuracy.update_state(ground_truth, predictions)
tf.summary.scalar('accuracy', accuracy.result(), step=4)

Other metrics are available, such as Mean, Recall, and TruePositives. While setting up
the logging of metrics in TensorBoard may seem a bit complicated and time-consuming, it
is an essential part of the TensorFlow toolkit. It will save you countless hours of debugging
and manual logging.

TensorFlow Addons and TensorFlow Extended
TensorFlow Addons is a collection of extra functionalities gathered into a single repository
(https://github.com/ tensorflow/ addons). It hosts some of the newer advancements in
deep learning that are too unstable or not used by enough people to justify adding them to
the main TensorFlow library. It also acts as a replacement for tf.contrib, which was
removed from TensorFlow 1.

TensorFlow Extended is an end-to-end machine learning platform for TensorFlow. It offers
several useful tools:

TensorFlow Data Validation: A library for exploring and validating machine
learning data. You can use it before even building your model.
TensorFlow Transform: A library for preprocessing data. It allows you to make
sure training and evaluation data are processed the same way.
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TensorFlow Model Analysis: A library for evaluating TensorFlow models.
TensorFlow Serving: A serving system for machine learning models. Serving is
the process of delivering predictions from a model, usually through a REST API:

Figure 2.6: End-to-end process of creating and using a deep learning model

As seen in Figure 2.6, these tools fulfill the goal of being end to end, covering every step of
the process of building and using a deep learning model.

TensorFlow Lite and TensorFlow.js
The main version of TensorFlow is designed for Windows, Linux, and Mac computers. To
operate on other devices, a different version of TensorFlow is necessary. TensorFlow Lite is
designed to run model predictions (inference) on mobile phones and embedded devices. It
is composed of a converter transforming TensorFlow models to the required .tflite
format and an interpreter that can be installed on mobile devices to run inferences.

More recently, TensorFlow.js (also referred to as tfjs) was developed to empower almost
any web browser with deep learning. It does not require any installation from the user and
can sometimes make use of the device's GPU acceleration. We detail the use of TensorFlow
Lite and TensorFlow.js in Chapter 9, Optimizing Models and Deploying on Mobile Devices.

Where to run your model
As computer vision models process large amounts of data, they take a long time to train.
Because of this, training on your local computer can take a considerable amount of time.
You will also notice that creating efficient models requires a lot of iterations. Those two
insights will drive your decision regarding where to train and run your models. In this
section, we will compare the different options available to train and use your model.
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On a local machine
Coding your model on your computer is often the fastest way to get started. As you have
access to a familiar environment, you can easily change your code as often as needed.
However, personal computers, especially laptops, lack the computing power to train a
computer vision model. Training on a GPU may be between 10 and 100 times faster than
using a CPU. This is why it is recommended to use a GPU.

Even if your computer has a GPU, only very specific models can run
TensorFlow. Your GPU must be compatible with CUDA, NVIDIA's
computing library. At the time of writing, the latest version of TensorFlow
requires a CUDA compute capability of 3.5 or higher.

Some laptops are compatible with external GPU enclosures, but this defeats the purpose of
a portable computer. Instead, a practical way is to run your model on a remote computer
that has a GPU.

On a remote machine
Nowadays, you can rent powerful machines with GPUs by the hour. Pricing varies,
depending on the GPU power and the provider. It usually costs around $1 per hour for a
single GPU machine, with the price going down every day. If you commit to renting the
machine for the month, you can get good computing power for around $100 per month.
Considering the time you will save waiting for the model to train, it often makes economic
sense to rent a remote machine.

Another option is to build your own deep learning server. Note that this requires
investment and assembly, and that GPUs consume large amounts of electricity.

Once you have secured access to a remote machine, you have two options:

Run Jupyter Notebook on the remote server. Jupyter Lab or Jupyter Notebook
will then be accessible using your browser, anywhere on the planet. It is a very
convenient way of performing deep learning.
Sync your local development folder and run your code remotely. Most IDEs have
a feature to sync your local code with a remote server. This allows you to code in
your favorite IDE while still enjoying a powerful machine.
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Google Colab, based on Jupyter notebooks, allows you to run notebooks
in the cloud for free. You can even enable GPU mode. Colab has limited
storage space and a limit of 8 hours of consecutive running time. While it
is the perfect tool for getting started or experimenting, it is not convenient
for larger models.

On Google Cloud
To run TensorFlow on a remote machine, you will need to manage it yourself—installing
the correct software, making sure it is up to date, and turning the server on and off. While it
is still possible to do so for one machine, and you sometimes need to distribute the training
among numerous GPUs, using Google Cloud ML to run TensorFlow allows you to focus on
your model and not on operations.

You will find that Google Cloud ML is useful for the following:

Training your model quickly thanks to elastic resources in the cloud
Looking for the best model parameters in the shortest amount of time possible
using parallelization
Once your model is ready, serving predictions without having to run your own
prediction server

All the details for packaging, sending, and running your model are available in the Google
Cloud ML documentation (https:/ /cloud. google. com/ml- engine/ docs/ ).

Summary
In this chapter, we started by training a basic computer vision model using the Keras API.
We introduced the main concepts behind TensorFlow 2—tensors, graphs, AutoGraph,
eager execution, and the gradient tape. We also detailed some of the more advanced
concepts of the framework. We went through the main tools surrounding the use of deep
learning with the library, from TensorBoard for monitoring, to TFX for preprocessing and
model analysis. Finally, we covered where to run your model depending on your needs.

With these powerful tools in hand, you are now ready to discover modern computer vision
models in the next chapter.

https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/
https://cloud.google.com/ml-engine/docs/


TensorFlow Basics and Training a Model Chapter 2

[ 74 ]

Questions
What is Keras in relation to TensorFlow, and what is its purpose?1.
Why does TensorFlow use graphs, and how do you create them manually?2.
What is the difference between eager execution mode and lazy execution mode?3.
How do you log information in TensorBoard, and how do you display it?4.
What are the main differences between TensorFlow 1 and TensorFlow 2?5.



3
Modern Neural Networks

In Chapter 1, Computer Vision and Neural Networks, we presented how recent neural
networks, which are more suitable for image processing, surpassed previous computer
vision methods of the past decade. However, limited by how much we can reimplement
from scratch, we only covered basic architectures. Now, with TensorFlow's powerful APIs
at our fingertips, it is time to discover what convolutional neural networks (CNNs) are,
and how these modern methods are trained to further improve their robustness.

The following topics will be covered in this chapter:

CNNs and their relevance to computer vision
Implementing these modern networks with TensorFlow and Keras
Advanced optimizers and how to train CNNs efficiently
Regularization methods and how to avoid overfitting

Technical requirements
The main resources of this chapter are implemented with TensorFlow. The Matplotlib
package (https:/ /matplotlib. org) and the scikit-image package (https:/ /scikit- image.
org) are also used, though only to display some results or to load example images.

As in previous chapters, Jupyter notebooks illustrating the concepts covered in this chapter
can be found in the following GitHub folder: github.com/PacktPublishing/Hands-On-
Computer-Vision-with-TensorFlow-2/tree/master/Chapter03.

Discovering convolutional neural networks
In the first part of this chapter, we will present CNNs, also known as ConvNets, and
explain why they have become omnipresent in vision tasks.
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Neural networks for multidimensional data
CNNs were introduced to solve some of the shortcomings of the original neural networks.
In this section, we will address these issues and present how CNNs deal with them.

Problems with fully connected networks
Through our introductory experiment in Chapter 1, Computer Vision and Neural
Networks, and Chapter 2, TensorFlow Basics and Training a Model, we have already 
highlighted the following two main drawbacks of basic networks when dealing with
images:

An explosive number of parameters
A lack of spatial reasoning

Let's discuss each of these here.

An explosive number of parameters
Images are complex structures with a large number of values (that is, H × W × D values
with H indiacting the image's height, W its width, and D its depth/number of channels,
such as D = 3 for RGB images). Even the small, single-channel images we used as examples
in the first two chapters represent input vectors of size 28 × 28 × 1 = 784 values each. For the
first layer of the basic neural network we implemented, this meant a weight matrix of shape
(784, 64). This equates to 50,176 (784 × 64) parameter values to optimize, just for this
variable!

This number of parameters simply explodes when we consider larger RGB images or
deeper networks.

A lack of spatial reasoning
Because their neurons receive all the values from the previous layer without any distinction
(they are fully connected), these neural networks do not have a notion of distance/spatiality.
Spatial relations in the data are lost. Multidimensional data, such as images, could also be
anything from column vectors to dense layers because their operations do not take into
account the data dimensionality nor the positions of input values. More precisely, this
means that the notion of proximity between pixels is lost to fully connected (FC) layers, as
all pixel values are combined by the layers with no regard for their original positions.
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As it does not change the behavior of dense layers, to simplify their
computations and parameter representations, it is common practice to
flatten multidimensional inputs before passing them to these layers (that
is, to reshape them into column vectors).

Intuitively, neural layers would be much smarter if they could take into account spatial
information; that is, that some input values belong to the same pixel (channel values) or to
the same image region (neighbor pixels).

Introducing CNNs
CNNs offer simple solutions to these shortcomings. While they work the same way as the
networks we introduced previously (such as feed-forward and backpropagation), some
clever changes were brought to their architecture.

First of all, CNNs can handle multidimensional data. For images, a CNN takes as input
three-dimensional data (height × width × depth) and has its own neurons arranged in a
similar volume (refer to Figure 3.1). This leads to the second novelty of CNNs—unlike fully
connected networks, where neurons are connected to all elements from the previous layer,
each neuron in CNNs only has access to some elements in the neighboring region of the
previous layer. This region (usually square and spanning all channels) is called the
receptive field of the neurons (or the filter size):

Figure 3.1: CNN representation, showing the receptive fields of the top-left neurons from the first layer to the last (further explanations can be found in the following subsections)
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By linking neurons only to their neighboring ones in the previous layer, CNNs not only
drastically reduce the number of parameters to train, but also preserve the localization of
image features.

CNN operations
With this architecture paradigm, several new types of layers were also introduced,
efficiently taking advantage of multidimensionality and local connectivity.

Convolutional layers
CNNs get their name from convolutional layers, which are at the core of their architecture. In
these layers, the number of parameters is further reduced by sharing the same weights and
bias among all neurons connected to the same output channel.

Concept
These specific neurons with shared weights and bias can also be thought of as a single
neuron sliding over the whole input matrix with spatially limited connectivity. At each step,
this neuron is only spatially connected to the local region in the input volume (H × W × D)
it is currently sliding over. Given this limited input of dimensions, kH × kW × D for a neuron
with a filter size (kH, kW), the neuron still works like the ones modeled in our first chapter—it
linearly combines the input values (kH × kW × D values) before applying an activation
function to the sum (a linear or non-linear function). Mathematically, the response, zi,j, of
the neuron when presented with the input patch starting at position (i, j) can be expressed
as follows:

 is the neuron's weights (that is, a two-dimensional matrix of shape kH × kW ×
D),  is the neuron's bias, and  is the activation function (for instance, sigmoid).
Repeating this operation for each position that the neuron can take over the input data, we
obtain its complete response matrix, 𝑧, of dimensions Ho × Wo, with Ho and Wo being the
number of times the neuron can slide vertically and horizontally (respectively) over the
input tensor.
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In practice, most of the time, square filters are used, meaning that they
have a size (k, k) with k = kH = kW. For the rest of this chapter, we will only
consider square filters to simplify the explanations, though it is good to
remember that their height and width may vary.

As a convolutional layer can still have N sets of different neurons (that is, N sets of neurons
with shared parameters), their response maps are stacked together into an output tensor of
shape Ho × Wo × N.

In the same way that we applied matrix multiplication to fully connected layers, the
convolution operation can be used here to compute all the response maps at once (hence
the name of these layers). Those familiar with this operation may have recognized it as soon
as we mentioned sliding filters over the input matrix. For those who are unfamiliar with the
operation, the results of a convolution are indeed obtained by sliding a filter, w, over the
input matrix, x, and computing, at each position, the dot product of the filter and the patch
of x starting at the current position. This operation is illustrated in Figure 3.2 (an input
tensor with a single channel is used to keep the diagram easy to understand):

Figure 3.2: A convolution illustrated

In Figure 3.2, please note that the input, x, has been padded with zeros, which is commonly
done in convolutional layers; for instance, when we want the output to be the same size as
the original input (a size of 3 × 3 in this example). The notion of padding is further
developed later in this chapter. 
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The proper mathematical term for this operation is actually cross-
correlation, though convolution is commonly used in the machine learning
community. The cross-correlation of a matrix, x, with a filter, w, is 

:

Notice the correspondence with our equation for z. On the other hand, the
actual mathematical convolution of a matrix, x, with a filter, w, is for all
valid positions (i, j):

As we can see, both operations are quite similar in this setup, and
convolution results can be obtained from the cross-correlation operation
by simply flipping the filters before it.

Properties
A convolutional layer with N sets of different neurons is thus defined by N weight matrices
(also called filters or kernels) of shape D × k × k (when the filters are square), and N bias
values. Therefore, this layer only has N × (Dk2 + 1) values to train. A fully connected layer
with similar input and output dimensions would need (H × W × D) × (Ho × Wo × N)
parameters instead. As we demonstrated previously, the number of parameters for fully
connected layers is influenced by the dimensionality of the data, whereas this does not
affect the parameter numbers for convolutional layers.

This property makes convolutional layers really powerful tools in computer vision for two
reasons. First, as implied in the previous paragraph, it means we can train networks for
larger input images without impacting the number of parameters we would need to tune.
Second, this also means that convolutional layers can be applied to any images, irrespective
of their dimensions! Unlike networks with fully connected layers, purely convolutional
ones do not need to be adapted and retrained for inputs of different sizes. 
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When applying a CNN to images of various sizes, you still need to be
careful when sampling the input batches. Indeed, a subset of images can
be stacked together into a normal batch tensor only if they all have the
same dimensions. Therefore, in practice, you should either sort the images
before batching them (mostly done during the training phase) or simply
process each image separately (usually during the testing phase).
However, both to simplify data processing and the network's task, people
usually preprocess their images so they are all the same size (through
scaling and/or cropping).

Besides those computational optimizations, convolutional layers also have interesting
properties related to image processing. With training, the layer's filters become really good
at reacting to specific local features (a layer with N filters means the possibility to react to N
different features). Each kernel of the first convolutional layer in a CNN would, for
instance, learn to activate for a specific low-level feature, such as a specific line orientation
or color gradient. Then, deeper layers would use these results to localize more
abstract/advanced features, such as the shape of a face, and the contours of a particular
object. Moreover, each filter (that is, each set of shared neurons) would respond to a specific
image feature, whatever its location(s) in the image. More formally, convolutional layers
are invariant to translation in the image coordinate space.

The response map of a filter over the input image can be described as a map representing
the locations where the filter responded to its target feature. For this reason, those 
intermediary results in CNNs are commonly called feature maps. A layer with N filters
will, therefore, return N feature maps, each corresponding to the detection of a particular
feature in the input tensors. The stack of N feature maps returned by a layer is commonly
called a feature volume (with a shape of Ho × Wo × N).

Hyperparameters
A convolutional layer is first defined by its number of filters, N, by its input depth, D (that
is, the number of input channels), and by its filter/kernel size, (kH, kW). As square filters are 
commonly used, the size is usually simply defined by k (though, as mentioned earlier, non-
square filters are sometimes considered).

However, as mentioned previously, convolutional layers actually differ from the homonym
mathematical operation. The operation between the input and their filters can take several
additional hyperparameters, affecting the way the filters are sliding over the images.
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First, we can apply different strides with which the filters are sliding. The stride
hyperparameter thus defines whether the dot product between the image patches and the
filters should be computed at every position when sliding (stride = 1), or every s position
(stride = s). The larger the stride, the sparser the resulting feature maps.

Images can also be zero-padded before convolution; that is, their sizes can be synthetically
increased by adding rows and columns of zeros around their original content. As shown in
Figure 3.2, this padding increases the number of positions the filters can take over the
images. We can thus specify the padding value to be applied (that is, the number of empty
rows and columns to be added on each side of the inputs).

The letter k is commonly used for the filter/kernel size (k for kernel).
Similarly, s is commonly used for the stride, and p for the padding. Note
that, as with the filter size, the same values are usually used for the
horizontal and vertical strides (s = sH = sW), as well as for the horizontal and
vertical padding; though, for some specific use cases, they may have
different values.

All these parameters (the number of kernels, N; kernel size, k; stride, s; and padding, p) not
only affect the layer's operations, but also its output shape. Until now, we defined this
shape as (Ho, Wo, N), with Ho and Wo the number of times the neuron can slide vertically
and horizontally over the inputs. So, what actually are Ho and Wo? Formally, they can be
computed as follows:

While we invite you to pick some concrete examples to better grasp these formulas, we can
intuitively understand the logic behind them. Filters of size 𝑘 can take a maximum of H - k +
1 different vertical positions and W - k + 1 horizontal ones in images of size H × W.
Additionally, this number of positions increases to H - k + 2p + 1 (with respect to W - k + 2p +
1) if these images are padded by p on every side. Finally, increasing the stride, s, basically
means considering only one position out of s, explaining the division (note that it is an
integer division).

With these hyperparameters, we can easily control the layer's output sizes. This is
particularly convenient for applications such as object segmentation; that is, when we want
the output segmentation mask to be the same size as the input image.
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TensorFlow/Keras methods
Available in the low-level API, tf.nn.conv2d() (refer to the documentation at https:/ /
www.tensorflow.org/ api_ docs/ python/ tf/ nn/conv2d) is the default choice for image
convolution. Its main parameters are as follows:

input: The batch of input images, of shape (B, H, W, D), with B being the batch
size.
filter: The N filters stacked into a tensor of shape (kH, kW, D, N).
strides: A list of four integers representing the stride for each dimension of the
batched input. Typically, you would use [1, sH, sW, 1] (that is, applying a custom
stride only for the two spatial dimensions of the image).
padding: Either a list of 4 × 2 integers representing the padding before and after
each dimension of the batched input, or a string defining which predefined
padding case to use; that is, either VALID or SAME (explanations follow).
name: The name to identify this operation (useful for creating clear, readable
graphs).

Note that tf.nn.conv2d() accepts some other more advanced parameters, which we will
not cover yet (refer to the documentation). Figures 3.3 and 3.4 illustrate the effects of two
convolutional operations with different arguments:

Figure 3.3: Example of a convolution performed on an image with TensorFlow. The kernel here is a well-known one, commonly used to apply Gaussian blur to images

https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d


Modern Neural Networks Chapter 3

[ 84 ]

In the following screenshot, a kernel that's well known in computer vision is applied:

Figure 3.4: Example of another TensorFlow convolution, with a larger stride. This specific kernel is commonly used to extract edges/contours in images

Regarding padding, TensorFlow developers made the choice to provide two different pre-
implemented modes so that users do not have to figure out which value, p, they need for
usual cases. VALID means the images won't be padded (p = 0), and the filters will slide only
over the default valid positions. When opting for SAME, TensorFlow will calculate the
value, p, so that the convolution outputs have the same height and width as the inputs for a
stride of 1 (that is, solving Ho = Ho and Wo = W given the equations presented in the
previous section, temporarily setting s to 1).

Sometimes, you may want to pad with something more complex than
zeros. In those cases, it is recommended to use the tf.pad() method
(refer to the documentation at https:/ /www. tensorflow. org/ api_ docs/
python/ tf/ pad) instead, and then simply instantiate a convolution
operation with VALID padding.

TensorFlow also offers several other low-level convolution methods, such
as tf.nn.conv1d() (refer to the documentation at https:/ /www.
tensorflow. org/ api_ docs/ python/ tf/nn/ conv1d) and tf.nn.conv3d()
(refer to the documentation at https:/ /www. tensorflow. org/ api_ docs/
python/ tf/ nn/ conv3d),  for one-dimensional and three-dimensional data,
respectively, or tf.nn.depthwise_conv2d() (refer to the
documentation at https:/ /www.tensorflow. org/api_ docs/ python/ tf/
nn/depthwise_ conv2d) to convolve each channel of the images with
different filters, and more.
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So far, we have only presented convolutions with fixed filters. For CNNs, we have to make
the filters trainable. Convolutional layers also apply a learned bias before passing the result
to an activation function. This series of operations can, therefore, be implemented as
follows:

# Initializing the trainable variables (for instance, the filters with
values from a Glorot distribution, and the bias with zeros):
kernels_shape = [k, k, D, N]
glorot_uni_initializer = tf.initializers.GlorotUniform()
# ^ this object is defined to generate values following the Glorot
distribution (note that other famous parameter more or less random
initializers exist, also covered by TensorFlow)
kernels = tf.Variable(glorot_uni_initializer(kernels_shape),
                      trainable=True, name="filters")
bias = tf.Variable(tf.zeros(shape=[N]), trainable=True, name="bias")

# Defining our convolutional layer as a compiled function:
@tf.function
def conv_layer(x, kernels, bias, s):
    z = tf.nn.conv2d(x, kernels, strides=[1,s,s,1], padding='VALID')
    # Finally, applying the bias and activation function (for instance,
ReLU):
    return tf.nn.relu(z + bias)

This feed-forward function can further be wrapped into a Layer object, similar to how the
fully connected layer we implemented in Chapter 1, Computer Vision and Neural Networks,
was built around the matrix operations. Through the Keras API, TensorFlow 2 provides its
own tf.keras.layers.Layer class, which we can extend (refer to the documentation at
https://www.tensorflow. org/ api_ docs/ python/ tf/keras/ layers/ Layer). The following
code block demonstrates how a simple convolution layer can be built on this:

class SimpleConvolutionLayer(tf.keras.layers.Layer):
    def __init__(self, num_kernels=32, kernel_size=(3, 3), stride=1):
        """ Initialize the layer.
        :param num_kernels: Number of kernels for the convolution
        :param kernel_size: Kernel size (H x W)
        :param stride: Vertical/horizontal stride
        """
        super().__init__()
        self.num_kernels = num_kernels
        self.kernel_size = kernel_size
        self.stride = stride

    def build(self, input_shape):
        """ Build the layer, initializing its parameters/variables.
        This will be internally called the 1st time the layer is used.
        :param input_shape: Input shape for the layer (for instance,
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BxHxWxC)
        """
        num_input_ch = input_shape[-1] # assuming shape format BHWC
        # Now we know the shape of the kernel tensor we need:
        kernels_shape = (*self.kernel_size, num_input_ch, self.num_kernels)
        # We initialize the filter values fior instance, from a Glorot
distribution:
        glorot_init = tf.initializers.GlorotUniform()
        self.kernels = self.add_weight( # method to add Variables to layer
            name='kernels', shape=kernels_shape, initializer=glorot_init,
            trainable=True) # and we make it trainable.
        # Same for the bias variable (for instance, from a normal
distribution):
        self.bias = self.add_weight(
            name='bias', shape=(self.num_kernels,),
            initializer='random_normal', trainable=True)

    def call(self, inputs):
        """ Call the layer, apply its operations to the input tensor."""
        return conv_layer(inputs, self.kernels, self.bias, self.stride)

Most of TensorFlow's mathematical operations (for example, in tf.math and tf.nn)
already have their derivatives defined by the framework. Therefore, as long as a layer is
composed of such operations, we do not have to manually define its backpropagation,
saving quite some effort!

While this implementation has the advantage of being explicit, the Keras API also
encapsulates the initialization of common layers (as presented in Chapter 2, TensorFlow
Basics and Training a Model), thereby speeding up development. With the
tf.keras.layers module, we can instantiate a similar convolutional layer in a single call,
as follows:

conv = tf.keras.layers.Conv2D(filters=N, kernel_size=(k, k), strides=s,
                              padding='valid', activation='relu')

tf.keras.layers.Conv2D() (refer to the documentation at https:/ /www. tensorflow.
org/api_docs/python/ tf/ keras/ layers/ Conv2D) has a long list of additional parameters,
encapsulating several concepts, such as weight regularization (presented later in this
chapter). Therefore, it is recommended to use this method when building advanced CNNs,
instead of spending time reimplementing such concepts.
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Pooling layers
Another commonly used category of layer introduced with CNNs is the pooling type.

Concept and hyperparameters
These pooling layers are a bit peculiar because they do not have any trainable parameters.
Each neuron simply takes the values in its window (the receptive field) and returns a single
output, computed from a predefined function. The two most common pooling methods are
max-pooling and average-pooling. Max-pooling layers return only the maximum value at
each depth of the pooled area (refer to Figure 3.5), and average-pooling layers compute the
average at each depth of the pooled area (refer to Figure 3.6).

Pooling layers are commonly used with a stride value equal to the size of their window/kernel
size, in order to apply the pooling function over non-overlapping patches. Their purpose is
to reduce the spatial dimensionality of the data, cutting down the total number of parameters
needed in the network, as well as its computation time. For instance, a pooling layer with a
2 × 2 window size and stride of 2 (that is, k = 2 and s = 2) would take patches of four values
at each depth and return a single number. It would thus divide the height and the width of
the features by 2; that is, dividing the number of computations for the following layers by 2
× 2 = 4. Finally, note that, as with convolutional layers, you can pad the tensors before
applying the operation (as shown in Figure 3.5):

Figure 3.5: Illustration of a max-pooling operation with a window size of 3 × 3, a padding of 1, and a stride of 2 on a single-channel input
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Through the padding and stride parameters, it is thus possible to control the dimensions of
the resulting tensors. Figure 3.6 provides another example:

Figure 3.6: Illustration of an average-pooling operation with a window size of 2 × 2, a padding of 0, and a stride of 2 on a single-channel input

With hyperparameters being similar to convolutional layers except for the absence of
trainable kernels, pooling layers are, therefore, easy to use and lightweight solutions for
controlling data dimensionality.

TensorFlow/Keras methods
Also available from the tf.nn package, tf.nn.max_pool() (refer to the documentation at
https://www.tensorflow. org/ api_ docs/ python/ tf/nn/ max_ pool) and
tf.nn.avg_pool() (refer to the documentation at https:/ /www. tensorflow. org/ api_
docs/python/tf/nn/ avg_ pool) conveniently have a signature quite similar to
tf.nn.conv2d(), as follows:

value: The batch of input images of shape (B, H, W, D), with B being the batch
size
ksize: A list of four integers representing the window size in each dimension;
commonly, [1, k, k, 1] is used
strides: A list of four integers representing the stride for each dimension of the
batched input, similar to tf.nn.conv2d()
padding: A string defining which padding algorithm to use (VALID or SAME)
name: The name to identify this operation (useful for creating clear, readable
graphs)
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Figure 3.7 illustrates an average-pooling operation applied to an image:

Figure 3.7: Example of average-pooling performed on an image with TensorFlow

In Figure 3.8, the max-pooling function is applied to the same image:

Figure 3.8: Example of another max-pooling operation, with an excessively large window size compared to the stride (purely for demonstration purposes)
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Here, again, we can still use the higher-level API to make the instantiation slightly more
succinct:

avg_pool = tf.keras.layers.AvgPool2D(pool_size=k, strides=[s, s],
padding='valid')
max_pool = tf.keras.layers.MaxPool2D(pool_size=k, strides=[s, s],
padding='valid')

Since pooling layers do not have trainable weights, there is no real distinction between the
pooling operation and the corresponding layer in TensorFlow. This makes these operations
not only lightweight, but easy to instantiate.

Fully connected layers
It is worth mentioning that FC layers are also used in CNNs, the same way they are in
regular networks. We will present, in the following paragraphs, when they should be
considered, and how to include them in CNNs.

Usage in CNNs
While FC layers can be added to CNNs processing multidimensional data, this implies,
however, that the input tensors passed to these layers must first be reshaped into a batched
column vector—the way we did with the MNIST images for our simple network in Chapter
1, Computer Vision and Neural Networks, and Chapter 2, TensorFlow Basics and Training a
Model (that is, flattening the height, width, and depth dimensions into a single vector).

FC layers are also often called densely connected, or simply dense (as
opposed to other CNN layers that have more limited connectivity).
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While it can be advantageous in some cases for neurons to have access to the complete
input map (for instance, to combine spatially distant features), fully connected layers have
several shortcomings, as mentioned at the beginning of this chapter (for example, the loss
of spatial information and the large number of parameters). Moreover, unlike other CNN
layers, dense ones are defined by their input and output sizes. A specific dense layer will
not work for inputs that have a shape different from the one it was configured for.
Therefore, using FC layers in a neural network usually means losing the possibility to apply
them to images of heterogeneous sizes.

Despite these shortcomings, these layers are still commonly used in CNNs. They are
usually found among the final layers of a network, for instance, to convert the
multidimensional features into a 1D classification vector.

TensorFlow/Keras methods
Although we already used TensorFlow's dense layers in the previous chapter, we did not
stop to focus on their parameters and properties. Once again, the signature
of tf.keras.layers.Dense() (refer to the documentation at https:/ / www.tensorflow.
org/api_docs/python/ tf/ keras/ layers/ Dense) is comparable to that of previously
introduced layers, with the difference that they do not accept any strides or padding for
parameters, but instead use units representing the number of neurons/output size, as
follows:

fc = tf.keras.layers.Dense(units=output_size, activation='relu')

Remember that you should, however, take care of flattening the multidimensional tensors
before passing them to dense layers. tf.keras.layers.Flatten() (refer to the
documentation at https:/ / www. tensorflow. org/ api_ docs/ python/ tf/ keras/ layers/
Flatten) can be used as an intermediate layer for that purpose.

Effective receptive field
As we will detail in this section, the effective receptive field (ERF) of a neural network is
an important notion in deep learning, as it may affect the ability of the network to cross-
reference and combine distant elements in the input images.
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Definitions
While the receptive field represents the local region of the previous layer that a neuron is
connected to, the ERF defines the region of the input image (and not just of the previous
layer), which affects the activation of a neuron for a given layer, as shown in Figure 3.9:

Figure 3.9: Illustration of the receptive field of a layer with a simple network of two convolutional layers

Note that it is common to find the term receptive field (RF) used in place of ERF, because
RF can simply be referred to as the filter size or the window size of a layer. Some people
also use RF or ERF to specifically define the input regions affecting each unit of the output
layer (and not just any intermediary layer of a network).

Adding to the confusion, some researchers started calling ERF the subset of the input
region that is actually affecting a neuron. This was introduced by Wenjie Luo et al. in their
paper, Understanding the Effective Receptive Field in Deep Convolutional Neural
Networks, published in Advances in Neural Information Processing Systems (2016). Their idea
was that not all pixels seen by a neuron contribute equally to its response. We can intuitively
accept that, for instance, pixels at the center of the RF will have more weight than
peripheral ones. The information held by these central pixels can be propagated along
multiple paths in the intermediary layers of the network to reach a given neuron, while
pixels in the periphery of the receptive field are connected to this neuron through a single
path. Therefore, the ERF, as defined by Luo et al., follows a pseudo-Gaussian distribution,
unlike the uniform distribution of a traditional ERF.
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The authors make an interesting parallel between this representation of the receptive field
and the human central fovea, the region of the eye responsible for our sharp central vision.
This detailed part of the vision is at the basis of many human activities. Half the optical
nerves are linked to the fovea (despite its relatively small size), in the same way that central
pixels in effective receptive fields are connected to a higher number of artificial neurons.

Formula
No matter what actual role its pixels are playing, the effective receptive field (named
Ri here) of the ith layer of a CNN can be recursively computed as follows:

In this equation, ki is the filter size of the layer, and si is its stride (the last part of the
equation thus represents the product of the strides for all the previous layers). As an
example, we can apply this formula to the minimalist two-layer CNN presented in Figure
3.9 to quantitatively evaluate the ERF of the second layer as follows:

This formula confirms that the ERF of a network is directly affected by the number of
intermediary layers, their filter sizes, and the strides. Subsampling layers, such as pooling
layers or layers with larger strides, greatly increase the ERF at the cost of lower feature
resolution.

Because of the local connectivity of CNNs, you should keep in mind how layers and their
hyperparameters will affect the flow of visual information across the networks when
defining their architecture.

CNNs with TensorFlow
Most state-of-the-art computer vision algorithms are based on CNNs built with the three
different types of layers we just introduced (that is, convolutional, pooling, and FC), with
some tweaks and tricks that we will present in this book. In this section, we will build our
first CNN and apply it to our digit recognition task.
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Implementing our first CNN
For our first convolutional neural network, we will implement LeNet-5. First introduced by
Yann Le Cun in 1995 (in Learning algorithms for classification: A comparison on handwritten
digit recognition, World Scientific Singapore) and applied to the MNIST dataset, LeNet-5 may
not be a recent network, but it is still commonly used to introduce people to CNNs. Indeed,
with its seven layers, this network is straightforward to implement, while yielding
interesting results.

LeNet-5 architecture
As shown in Figure 3.10, LeNet-5 is first composed of two blocks, each containing a
convolutional layer (with the kernel size k = 5 and stride s = 1) followed by a max-pooling
layer (with k = 2 and s = 2). In the first block, the input images are zero-padded by 2 on each
side before convolution (that is, p = 2, hence an actual input size of 32 × 32), and the
convolution layer has six different filters (N = 6). There is no padding before the second
convolution (p = 0), and its number of filters is set to 16 (N = 16). After the two blocks, three
fully connected layers merge the features together and lead to the final class estimation (the
10 digit classes). Before the first dense layer, the 5 × 5 × 16 feature volume is flattened into a
vector of 400 values. The complete architecture is represented in the following diagram:

Figure 3.10: LeNet-5 architecture (rendered with the NN-SVG tool by Alexander Lenail—http://alexlenail.me/NN-SVG)
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In the original implementation, each convolution layer and dense layer except the last one
uses tanh as an activation function. However, ReLU is nowadays preferred to tanh,
replacing it in most LeNet-5 implementations. For the last layer, the softmax function is
applied. This function takes a vector of N values and returns a same-size vector, y, with its
values normalized into a probability distribution. In other words, softmax normalizes a
vector so that its values are all between 0 and 1, and their sum is exactly equal to 1.
Therefore, this function is commonly used at the end of neural networks applied to
classification tasks in order to convert the network's predictions into per-class probability,
as mentioned in Chapter 1, Computer Vision and Neural Networks (that is, given an output
tensor, y = [y0, ..., yi, ..., yN], yi represents how likely it is that the sample belongs to class i
according to the network).

The network's raw predictions (that is, before normalization) are
commonly named logits. These unbounded values are usually converted
into probabilities with the softmax function. This normalization process
makes the prediction more readable (each value represents the confidence
of the network for the corresponding class; refer to the belief scores
mentioned in Chapter 1, Computer Vision and Neural Networks) and
simplifies the computation of the training loss (that is, the categorical
cross-entropy for classification tasks).

TensorFlow and Keras implementations
We have all the tools in hand to implement this network. We suggest that you try them
yourself, before checking the TensorFlow and Keras implementations provided. Reusing
the notations and variables from Chapter 2, TensorFlow Basics and Training a Model, a
LeNet-5 network using the Keras Sequential API would be as follows:

from tensorflow.keras.model import Model, Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

model = Sequential() # `Sequential` inherits from tf.keras.Model
# 1st block:
model.add(Conv2D(6, kernel_size=(5, 5), padding='same', activation='relu',
 input_shape=(img_height, img_width, img_channels))
model.add(MaxPooling2D(pool_size=(2, 2)))
# 2nd block:
model.add(Conv2D(16, kernel_size=(5, 5), activation='relu')
model.add(MaxPooling2D(pool_size=(2, 2)))
# Dense layers:
model.add(Flatten())
model.add(Dense(120, activation='relu'))
model.add(Dense(84, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
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The model is created by instantiating and adding the layers one by one, sequentially. As
mentioned in Chapter 2, TensorFlow Basics and Training a Model, Keras also provides
the functional API. This API makes it possible to define models in a more object-oriented
approach (as shown in the following code), though it is also possible to directly
instantiate tf.keras.Model with the layer operations (as illustrated in some of our
Jupyter notebooks):

from tensorflow.keras import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

class LeNet5(Model): # `Model` has the same API as `Layer` + extends it
    def __init__(self, num_classes): # Create the model and its layers
        super(LeNet5, self).__init__()
        self.conv1 = Conv2D(6, kernel_size=(5, 5), padding='same',
                            activation='relu')
        self.conv2 = Conv2D(16, kernel_size=(5, 5), activation='relu')
        self.max_pool = MaxPooling2D(pool_size=(2, 2))
        self.flatten = Flatten()
        self.dense1 = Dense(120, activation='relu')
        self.dense2 = Dense(84, activation='relu')
        self.dense3 = Dense(num_classes, activation='softmax')
    def call(self, x): # Apply the layers in order to process the inputs
        x = self.max_pool(self.conv1(x)) # 1st block
        x = self.max_pool(self.conv2(x)) # 2nd block
        x = self.flatten(x)
        x = self.dense3(self.dense2(self.dense1(x))) # dense layers
        return x

Keras layers can indeed behave like functions that can be applied to input data and chained
until the desired output is obtained. The functional API allows you to build more complex
neural networks; for example, when one specific layer is reused several times inside the
networks, or when layers have multiple inputs or outputs.

For those who have already experimented with PyTorch (https:/ /
pytorch. org), another machine learning framework, this object-oriented
approach to building neural networks may seem familiar, as it is favored
there.

https://pytorch.org
https://pytorch.org
https://pytorch.org
https://pytorch.org
https://pytorch.org
https://pytorch.org
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Application to MNIST
We can now compile and train our model for digit classification. Pursuing this with the
Keras API (and reusing the MNIST data variables prepared in the last chapter), we 
instantiate the optimizer (a simple stochastic gradient descent (SGD) optimizer) and
define the loss (the categorical cross-entropy) before launching the training, as follows:

model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
# We also instantiate some Keras callbacks, that is, utility functions
automatically called at some points during training to monitor it:
callbacks = [
    # To interrupt the training if `val_loss` stops improving for over 3
epochs:
    tf.keras.callbacks.EarlyStopping(patience=3, monitor='val_loss'),
    # To log the graph/metrics into TensorBoard (saving files in `./logs`):
    tf.keras.callbacks.TensorBoard(log_dir='./logs', histogram_freq=1)]
# Finally, we launch the training:
model.fit(x_train, y_train, batch_size=32, epochs=80,
          validation_data=(x_test, y_test), callbacks=callbacks)

Note the use of sparse_categorical_crossentropy, instead of
categorical_crossentropy, to avoid one-hot encoding the labels. This
loss was described in Chapter 2, TensorFlow Basics and Training a Model.

After ~60 epochs, we observe that our network's accuracy on the validation data reaches
above ~98.5%! Compared to our previous attempts with non-convolutional networks, the
relative error has been divided by 2 (from a ~3.0% to ~1.5% relative error), which is a
significant improvement (given the high accuracy already).

In the following chapters, we will fully appreciate the analytical power of CNNs, applying
them to increasingly complex visual tasks.

Refining the training process
Network architectures are not the only things to have improved over the years. The way
that networks are trained has also evolved, improving how reliably and quickly they can
converge. In this section, we will tackle some of the shortcomings of the gradient descent
algorithm we covered in Chapter 1, Computer Vision and Neural Networks, as well as some
ways to avoid overfitting.
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Modern network optimizers
Optimizing multidimensional functions, such as neural networks, is a complex task. The
gradient descent solution we presented in the first chapter is an elegant solution, though it
has some limitations that we will highlight in the following section. Thankfully, researchers
have been developing new generations of optimization algorithms, which we will also
discuss.

Gradient descent challenges
We previously presented how the parameters, P, of a neural network (that is, all the weight
and bias parameters of its layers) can be iteratively updated during training to minimize
the loss, L, backpropagating its gradient. If this gradient descent process could be 
summarized in a single equation, it would be the following:

 is the learning rate hyperparameter, which accentuates or attenuates how the network's
parameters are updated with regard to the gradient of the loss at every training iteration.
While we mentioned that the learning rate value should be set with care, we did not explain
how and why. The reasons for caution in this setup are threefold.

Training velocity and trade-off
We partially covered this point earlier. While setting a high learning rate may allow the
trained network to converge faster (that is, in fewer iterations, as the parameters undergo
larger updates each iteration), it also may prevent the network from finding a proper loss
minimum. Figure 3.11 is a famous illustration representing this trade-off between
optimization over-cautiousness and haste:
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Figure 3.11: Illustration of the learning rate trade-off

From Figure 3.11, we can observe that an excessively low learning rate will slow down
convergence (diagram A on the left), while an excessively high learning rate may cause it to
overshoot the local minima (diagram B on the right).

Intuitively, there should be a better solution than trial and error to find the proper learning
rate. For instance, a popular solution is to dynamically adjust the learning rate during
training, starting with a larger value (for faster exploration of the loss domain at first) and
decreasing it after every epoch (for more careful updating when getting closer to the
minimum). This process is named learning rate decay. Manual decaying can still be found
in many implementations, though, nowadays, TensorFlow offers more advanced learning
rate schedulers and optimizers with adaptive learning rates.

Suboptimal local minima
A common problem when optimizing complex (that is, non-convex) methods is getting stuck
in suboptimal local minima. Indeed, gradient descent may lead us to a local minimum it
cannot escape, even though a better minimum lies close by, as shown in Figure 3.12:

Figure 3.12: Example of gradient descent ending up in a sub-optimal local minimum
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Because of the random sampling of training samples (causing the gradients to often differ
from one mini-batch to another), the SGD presented in Chapter 1, Computer Vision and
Neural Networks, is already able to jump out of shallow local minima.

Note that the gradient descent process cannot ensure the convergence to a global
minimum (that is, the convergence to the best set of parameters among all possible
combinations). This would imply scanning the complete loss domain, to make sure that a
given minimum is indeed the best (this would mean, for instance, computing the loss for all
possible combinations of the parameters). Given the complexity of visual tasks and the
large number of parameters needed to tackle them, data scientists are usually glad to just
find a satisfying local minimum.

A single hyperparameter for heterogeneous parameters
Finally, in traditional gradient descent, the same learning rate is used to update all the
parameters of the network. However, not all these variables have the same sensitivity to
changes, nor do they all impact the loss at every iteration.

It may seem beneficial to have different learning rates (for instance, per subset of
parameters) to update crucial parameters more carefully, and to more boldly update
parameters that are not contributing often enough to the network's predictions.

Advanced optimizers
Some of the intuitions we presented in the previous paragraphs have been properly studied
and formalized by researchers, leading to new optimization algorithms based on SGD. We
will now list the most common of these optimizers, detailing their contributions and how to
use them with TensorFlow.

Momentum algorithms
First suggested by Boris Polyak (in Some methods of speeding up the convergence of iteration
methods, Elsevier, 1964), the momentum algorithm is based on SGD and inspired by the
physics notion of momentum—as long as an object is moving downhill, its speed will
increase with each step. Applied to gradient descent, the idea is to take previous parameter
updates, vi-1, into account, adding them to the new update terms, vi, as follows:
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Here,  (mu) is the momentum weighing (the value between 0 and 1), defining the fraction
of the previous updates to apply. If the current and previous steps have the same direction,
their magnitudes will add up, accelerating the SGD in this relevant direction. If they have
different directions, the momentum will dampen these oscillations.

In tf.optimizers (also accessible as tf.keras.optimizers), momentum is defined as
an optional parameter of SGD (refer to the documentation at https:/ / www.tensorflow.
org/api_docs/python/ tf/ keras/ optimizers/ SGD) as follows:

optimizer = tf.optimizers.SGD(lr=0.01, momentum=0.9, # `momentum` = "mu"
                              decay=0.0, nesterov=False)

This optimizer accepts a decay parameter, fixing the learning rate decay
over each update (refer to the previous paragraphs).

This optimizer instance can then be directly passed as a parameter to model.fit() when
launching the training through the Keras API. For more complex training scenarios (for
instance, when training interdependent networks), the optimizer can also be called,
providing it with the loss gradients and the model's trainable parameters. The following is
an example of a simple training step implemented manually:

@tf.function
def train_step(batch_images, batch_gts): # typical training step
    with tf.GradientTape() as grad_tape: # Tell TF to tape the gradients
        batch_preds = model(batch_images, training=True) # forward
        loss = tf.losses.MSE(batch_gts, batch_preds)     # compute loss
    # Get the loss gradients w.r.t trainable parameters and back-propagate:
    grads = grad_tape.gradient(loss, model.trainable_variables)
    optimizer.apply_gradients(zip(grads, model.trainable_variables))

tf.optimizers.SGD has one interesting Boolean parameter—to switch from the common
momentum method to Nesterov's algorithm. Indeed, a major problem of the former
method is that by the time the network gets really close to its loss minimum, the
accumulated momentum will usually be quite high, which may cause the method to miss
or oscillate around the target minimum.

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/SGD
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The Nesterov accelerated gradient (NAG or Nesterov momentum) offers a solution to this
problem (a related course is Introductory Lectures on Convex Programming Volume I: Basic
course, by Yurii Nesterov, Springer Science and Business Media). Back in the 1980s, Yurii
Nesterov's idea was to give the optimizer the possibility to have a look at the slope ahead
so that it knows it should slow down if the slope starts going up. More formally, Nesterov
suggested directly reusing the past term vi-1 to estimate which values, Pi+1, the parameters
would take if we keep following this direction. The gradient is then evaluated with respect
to those approximate future parameters, and it is used to finally compute the actual update
as follows:

This version of the momentum optimizer (where the loss is derived with respect to the
parameters' values updated according to the previous steps) is more adaptable to gradient
changes, and can significantly speed up the gradient descent process.

The Ada family
Adagrad, Adadelta, and Adam are several iterations and variations around the idea of
adapting the learning rate depending on the sensitivity and/or activation frequency of each
neuron.

Developed first by John Duchi et al. (in Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization, Journal of Machine Learning Research, 2011), the Adagrad optimizer
(for adaptive gradients) uses a neat formula (which we won't expand on here, though we
invite you to search for it) to automatically decrease the learning rate more quickly for
parameters linked to commonly found features, and more slowly for infrequent ones. In
other words, as presented in the Keras documentation, the more updates a parameter receives,
the smaller the updates (refer to the documentation at https:/ /keras. io/ optimizers/ ). This
optimization algorithm not only removes the need to manually adapt/decay the learning
rate, but it also makes the SGD process more stable, especially for datasets with sparse
representations.

Introducing Adadelta in 2013, Matthew D. Zeiler et al. (in ADADELTA: An Adaptive Learning
Rate Method, arXiv preprint) offered a solution to one problem inherent to Adagrad. As it
keeps decaying the learning rate every iteration, at some point, the learning rate becomes
too small and the network just cannot learn anymore (except maybe for infrequent
parameters). Adadelta avoids this problem by keeping in check the factors used to divide the
learning rate for each parameter.

https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
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RMSprop by Geoffrey Hinton is another well-known optimizer
(introduced in his Coursera course, Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude). Associated with, and quite
similar to Adadelta, RMSprop was also developed to correct Adagrad's flaw.

Adam (for adaptive moment estimation) is another iteration by Diederik P. Kingma et al.
(in Adam: A method for stochastic optimization, ICLR, 2015). In addition to storing previous
update terms, vi, to adapt the learning rate for each parameter, Adam also keeps track of the
past momentum values. It is, therefore, often identified as a mix between Adadelta and
momentum. Similarly, Nadam is an optimizer inheriting from Adadelta and NAG.

All these various optimizers are available in the tf.optimizers package (refer to the
documentation at https:/ / www. tensorflow. org/ api_ docs/ python/ tf/ train/ ). Note that
there is no consensus regarding which of these optimizers may be the best. Adam is,
however, preferred by many computer vision professionals for its effectiveness on scarce
data. RMSprop is also often considered a good choice for recurrent neural networks
(introduced in Chapter 8, Video and Recurrent Neural Networks).

A Jupyter notebook demonstrating how to use these various optimizers is
provided in the Git repository. Each optimizer is also applied to the
training of our LeNet-5 for MNIST classification, in order to compare their
convergence.

Regularization methods
Efficiently teaching neural networks so that they minimize the loss over training data is,
however, not enough. We also want these networks to perform well once applied to new
images. We do not want them to overfit the training set (as mentioned in Chapter
1, Computer Vision and Neural Networks). For our networks to generalize well, we mentioned
that rich training sets (with enough variability to cover possible testing scenarios) and well-
defined architectures (neither too shallow to avoid underfitting, nor too complex to prevent
overfitting) are key. However, other methods have been developed over the years for
regularization; for example, the process of refining the optimization phase to avoid
overfitting.
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Early stopping
Neural networks start overfitting when they iterate too many times over the same small set
of training samples. Therefore, a straightforward solution to prevent this problem is to
figure out the number of training epochs a model needs. The number should be low
enough to stop before the network starts overfitting, but still high enough for the network
to learn all it can from this training set.

Cross-validation is the key here to evaluate when training should be stopped. Providing a
validation dataset to our optimizer, the latter can measure the performance of the model on
images the network has not been directly optimized for. By validating the network, for
instance, after each epoch, we can measure whether the training should continue (that is,
when the validation accuracy appears to be still increasing) or be stopped (that is, when the
validation accuracy stagnates or drops). The latter is called early stopping.

In practice, we usually monitor and plot the validation loss and metrics as a function of the
training iterations, and we restore the saved weights at the optima (hence the importance of
regularly saving the network during training). This monitoring, early stopping, and
restoration of optimum weights can be automatically covered by one of the optional Keras
callbacks (tf.keras.callbacks.EarlyStopping), as already showcased in our previous
training.

L1 and L2 regularization
Another way to prevent overfitting is to modify the loss in order to include regularization
as one of the training objectives. The L1 and L2 regularizers are prime examples of this.

Principles
In machine learning, a regularization term, R(P), computed over the parameters, P, of the
method, f, to optimize (for instance, a neural network) can be added to the loss function, L,
before training, as follows:

Here,  is a factor controlling the strength of the regularization (typically, to scale down the
amplitude of the regularization term compared to the main loss), and y = f(x, P) is the
output of the method, f, parametrized by P for the input data, x. By adding this term, R(P),
to the loss, we force the network not only to optimize its task, but to optimize it while
constraining the values its parameters can take.
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For L1 and L2 regularization, the respective terms are as follows:

L2 regularization (also called ridge regularization) thus compels the network to minimize
the sum of its squared parameter values. While this regularization leads to the decay of all
parameter values over the optimization process, it more strongly punishes large parameters
due to the squared term. Therefore, L2 regularization encourages the network to keep its
parameter values low and thus more homogeneously distributed. It prevents the network from
developing a small set of parameters with large values influencing its predictions (as it may
prevent the network from generalizing).

On the other hand, the L1 regularizer (also called the LASSO (least absolute shrinkage
and selection operator) regularizer, first introduced in Linear Inversion of Band-Limited
Reflection Seismograms, by Fadil Santosa and William Symes, SIAM, 1986) compels the network
to minimize the sum of its absolute parameter values. The difference between this and L2
regularization may seem symbolic at first glance, but their properties are actually quite
different. As larger weights are not penalized by squaring, L1 regularization instead makes
the network shrink the parameters linked to less important features toward zero. Therefore,
it prevents overfitting by forcing the network to ignore less meaningful features (for
instance, tied to dataset noise). In other words, L1 regularization forces the network to
adopt sparse parameters; that is, to rely on a smaller set of non-null parameters. This can be
advantageous if the footprint of the network should be minimized (for mobile applications,
for example).

TensorFlow and Keras implementations
To implement those techniques, we should define the regularization loss and attach this
function to every target layer. At each training iteration, these additional losses should be
computed over the layers' parameters, and summed with the main task-specific loss (for
instance, the cross-entropy over the network's predictions) so that they can all be
backpropagated together by the optimizer. Thankfully, TensorFlow 2 provides several tools
to simplify this process.
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Additional losses can be attached to tf.keras.layers.Layer and tf.keras.Model
instances through their .add_loss(losses, ...) method, with the losses tensors or
zero-argument callables returning the loss values. Once properly added to a layer (see the
following code), these losses will be computed every time the layer/model is called. All the
losses attached to a Layer or Model instance, as well as the losses attached to its sublayers,
will be computed, and the list of loss values will be returned when calling the .losses
property. To better understand this concept, we'll extend the simple convolution layer
implemented previously to add optional regularization to its parameters:

from functools import partial

def l2_reg(coef=1e-2): # reimplementation of tf.keras.regularizers.l2()
    return lambda x: tf.reduce_sum(x ** 2) * coef

class ConvWithRegularizers(SimpleConvolutionLayer):
    def __init__(self, num_kernels=32, kernel_size=(3, 3), stride=1,
                 kernel_regularizer=l2_reg(), bias_regularizer=None):
        super().__init__(num_kernels, kernel_size, stride)
        self.kernel_regularizer = kernel_regularizer
        self.bias_regularizer = bias_regularizer

    def build(self, input_shape):
        super().build(input_shape)
        # Attaching the regularization losses to the variables.
        if self.kernel_regularizer is not None:
            # for instance, we tell TF to compute and save
            # `tf.nn.l1_loss(self.kernels)` at each call (that is
iteration):
            self.add_loss(partial(self.kernel_regularizer, self.kernels))
        if self.bias_regularizer is not None:
            self.add_loss(partial(self.bias_regularizer, self.bias))

Regularization losses should guide the models toward learning more robust features. They
should not take precedence over the main training loss, which is preparing the model for its
task. Therefore, we should be careful not to put too much weight on the regularization
losses. Their values are usually dampened by a coefficient between 0 and 1 (refer to coef in
our l2_reg() loss function). This weighing is especially important, for instance, when the
main loss is averaged (for example, MSE and MAE). So that the regularization losses do not
outweigh it, we should either make sure that they are also averaged over the parameters'
dimensions, or we should decrease their coefficient further.
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At each training iteration of a network composed of such layers, the regularization losses
can be computed, listed, and added to the main loss as follows:

# We create a NN containing layers with regularization/additional losses:
model = Sequential()
model.add(ConvWithRegularizers(6, (5, 5), kernel_regularizer=l2_reg())
model.add(...) # adding more layers
model.add(Dense(num_classes, activation='softmax'))

# We train it (c.f. function `training_step()` defined before):
for epoch in range(epochs):
    for (batch_images, batch_gts) in dataset:
        with tf.GradientTape() as grad_tape:
            loss = tf.losses.sparse_categorical_crossentropy(
                batch_gts, model(batch_images)) # main loss
            loss += sum(model.losses)           # list of addit. losses
        # Get the gradients of combined losses and back-propagate:
        grads = grad_tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))

We introduced .add_loss(), as this method can greatly simplify the
process of adding layer-specific losses to custom networks. However,
when it comes to adding regularization losses, TensorFlow provides a
more straightforward solution. We can simply pass the regularization loss
function as a parameter of the .add_weight() method (also named
.add_variable()) used to create and attach variables to a Layer
instance. For example, the kernels' variable could be directly created with
the regularization loss as follows: self.kernels =
self.add_weight(..., regularizer=self.kernel_regularizer).
At each training iteration, the resulting regularization loss values can still
be obtained through the layer or model's .losses property.

When using predefined Keras layers, we do not need to bother extending the classes to add
regularization terms. These layers can receive regularizers for their variables as parameters.
Keras even explicitly defines some regularizer callables in its tf.keras.regularizers
module. Finally, when using Keras training operations (such as model.fit(...)), Keras
automatically takes into account additional model.losses (that is, the regularization terms
and other possible layer-specific losses), as follows:

# We instantiate a regularizer (L1 for example):
l1_reg = tf.keras.regularizers.l1(0.01)
# We can then pass it as a parameter to the target model's layers:
model = Sequential()
model.add(Conv2D(6, kernel_size=(5, 5), padding='same', activation='relu',
                 input_shape=input_shape, kernel_regularizer=l1_reg))
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model.add(...) # adding more layers
model.fit(...) # training automatically taking into account the reg. terms.

Dropout
So far, the regularization methods we have covered are affecting the way networks are
trained. Other solutions are affecting their architecture. Dropout is one such method and
one of the most popular regularization tricks.

Definition
Introduced in Dropout: A Simple Way to Prevent Neural Networks from Overfitting (JMLR,
2014) by Hinton and his team (who made numerous contributions to deep learning),
dropout consists of randomly disconnecting (dropping out) some neurons of target layers at
every training iteration. This method thus takes a hyperparameter ratio, , which
represents the probability that neurons are being turned off at each training step (usually
set between 0.1 and 0.5). The concept is illustrated in Figure 3.13:

Figure 3.13: Dropout represented on a simple neural network (note that dropped-out neurons of layers are randomly chosen in each iteration)

By artificially and randomly impairing the network, this method forces the learning of
robust and concurrent features. For instance, as dropout may deactivate the neurons
responsible for a key feature, the network has to figure out other significant features in
order to reach the same prediction. This has the effect of developing redundant
representations of data for prediction.
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Dropout is also often explained as a cheap solution to simultaneously train a multitude of
models (the randomly impaired versions of the original network). During the testing phase,
dropout is not applied to the network, so the network's predictions can be seen as the
combination of the results that the partial models would have provided. Therefore, this
information averaging prevents the network from overfitting.

TensorFlow and Keras methods
Dropout can be called as a function through tf.nn.dropout(x, rate, ...) (refer to the
documentation at https:/ / www. tensorflow. org/ api_ docs/ python/ tf/ nn/ dropout) to
directly obtain a tensor with values randomly dropped, or as a layer through
tf.keras.layers.Dropout() (refer to the documentation at https:/ /www. tensorflow.
org/api_docs/python/ tf/ layers/ dropout), which can be added to neural models. By
default, tf.keras.layers.Dropout() is only applied during training (when the
layer/model is called with the training=True parameter) and is deactivated otherwise
(forwarding the values without any alteration).

Dropout layers should be added directly after layers we want to prevent from overfitting
(as dropout layers will randomly drop values returned by their preceding layers, forcing
them to adapt). For instance, you can apply dropout (for example, with a ratio, ) to
a fully connected layer in Keras, as shown in the following code block:

model = Sequential([ # ...
    Dense(120, activation='relu'),
    Dropout(0.2),    # ...
])

Batch normalization
Though our list is not exhaustive, we will introduce a final common regularization method,
which is also directly integrated into the networks' architectures.

Definition
Like dropout, batch normalization (proposed by Sergey Ioffe and Christian Szegedy in
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,
JMLR, 2015) is an operation that can be inserted into neural networks and affects their
training. This operation takes the batched results of the preceding layers and normalizes
them; that is, it subtracts the batch mean and divides it by the batch standard deviation.
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Since batches are randomly sampled in SGD (and thus are rarely the same twice), this
means that the data will almost never be normalized the same way. Therefore, the network
has to learn how to deal with these data fluctuations, making it more robust and generic.
Furthermore, this normalization step concomitantly improves the way the gradients flow
through the network, facilitating the SGD process.

The behavior of batch normalization layers is actually a bit more complex
than what we have succinctly presented. These layers have a couple of
trainable parameters that are used in denormalization operations, so that
the next layer does not just try to learn how to undo the batch
normalization.

TensorFlow and Keras methods
Similar to dropout, batch normalization is available in TensorFlow both as a
function, tf.nn.batch_normalization() (refer to the documentation at https:/ / www.
tensorflow.org/api_ docs/ python/ tf/ nn/ batch_ normalization) and as a layer,
tf.keras.layers.BatchNormalization() (refer to the documentation at https:/ /www.
tensorflow.org/api_ docs/ python/ tf/ keras/ layers/ BatchNormalization), making it 
straightforward to include this regularization tool inside networks.

All these various optimization techniques are precious tools for deep learning, especially
when training CNNs on imbalanced or scarce datasets, which is often the case for custom
applications (as elaborated on in Chapter 7, Training on Complex and Scarce Datasets).

Similar to the Jupyter notebook for the optimizers study, we provide
another notebook demonstrating how these regularization methods can be
applied, and how they affect the performance of our simple CNN.

Summary
With the help of TensorFlow and Keras, we caught up with years of research in deep
learning. As CNNs have become central to modern computer vision (and machine learning
in general), it is essential to understand how they perform, and what kinds of layers they
are composed of. As presented in this chapter, TensorFlow and Keras provide clear
interfaces to efficiently build such networks. They are also implementing several advanced
optimization and regularization techniques (such as various optimizers, L1/L2
regularization, dropout, and batch normalization) to improve the performance and
robustness of trained models, which is important to keep in mind for any application.
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We now have the tools to finally tackle more challenging computer vision tasks.

In the next chapter, we will therefore present several CNN architectures applied to the task
of classifying large picture datasets.

Questions
Why does the output of a convolutional layer have a smaller width and height1.
than the input, unless it is padded?
What would be the output of a max-pooling layer with a receptive field of (2, 2)2.
and stride of 2 on the input matrix in Figure 3.6?
How could LeNet-5 be implemented using the Keras functional API in a non-3.
object-oriented manner?
How does L1/L2 regularization affect networks?4.

Further reading
On the importance of initialization and momentum in deep learning (http:/ /
proceedings. mlr. press/ v28/ sutskever13. pdf), by Ilya Sutskever et al. This
often-referenced conference paper, published in 2013, presents and compares the
momentum and NAG algorithms.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting (http:/ / www.
jmlr.org/ papers/ volume15/ srivastava14a/ srivastava14a. pdf), by Nitish
Srivastava et al. This other conference paper, published in 2014, introduced
dropout. It is a great read for those who want to know more about this method
and see it applied to several famous computer vision datasets.
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Section 2: State-of-the-Art

Solutions for Classic
Recognition Problems

In this section, you will discover and apply modern methods to solve a variety of problems.
Classification, a canonical machine learning task, will serve as a great example to introduce
up-to-date neural network architectures (such as Inception and ResNet) and transfer
learning. Object detection, useful for self-driving cars and other robots, will serve to
illustrate the trade-off between speed and accuracy through the comparison of two widely
used algorithms—YOLO and Faster R-CNN. Finally, building upon the two previous
chapters, the final chapter in this section ends with an in-depth presentation of encoder-
decoder networks applied to image denoising and semantic segmentation.

The following chapters will be covered in this section:

Chapter 4, Influential Classification Tools
Chapter 5, Object Detection Models
Chapter 6, Enhancing and Segmenting Images
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Influential Classification Tools

After the deep learning breakthrough in 2012, research toward more refined classification
systems based on convolutional neural networks (CNNs) gained momentum. Innovation
is moving at a frantic pace nowadays, as more and more companies are developing smart
products. Among the numerous solutions developed over the years for object classification,
some have became famous for their contributions to computer vision. They have been
derived and adapted for so many different applications that they have achieved must-know
status, and so deserve their own chapter.

In parallel with the advanced network architectures introduced by these solutions, other
methods have been explored to better prepare CNNs for their specific tasks. So, in the
second part of this chapter, we will look at how the knowledge acquired by networks on
specific use cases can be transferred to new applications for enhanced performance.

The following topics will be covered in this chapter:

What instrumental architectures such as VGG, inception, and ResNet have
brought to computer vision
How these solutions can be reimplemented or directly reused for classification
tasks
What transfer learning is, and how to efficiently repurpose trained networks

Technical requirements
Jupyter notebooks illustrating the concepts presented in this chapter can be found in the
GitHub folder at github.com/PacktPublishing/Hands-On-Computer-Vision-with-
TensorFlow-2/tree/master/Chapter04.

The only new package introduced in this chapter is tensorflow-hub. Installation
instructions can be found at https:/ /www. tensorflow. org/ hub/ installation (though it is
a single-line command with pip: pip install tensorflow-hub).
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Understanding advanced CNN architectures
Research in computer vision has been moving forward both through incremental
contributions and large innovative leaps. Challenges organized by researchers and
companies, inviting experts to submit new solutions in order to best solve a predefined
task, have been playing a key role in triggering such instrumental contributions. The
ImageNet classification contest (ImageNet Large Scale Visual Recognition Challenge
(ILSVRC); see Chapter 1, Computer Vision and Neural Networks) is a perfect example. With
its millions of images split into 1,000 fine-grained classes, it still represents a great challenge
for daring researchers, even after the significant and symbolic victory of AlexNet in 2012.

In this section, we will present some of the classic deep learning methods that followed
AlexNet in tackling ILSVRC, covering the reasons leading to their development and the
contributions they made.

VGG – a standard CNN architecture
The first network architecture we will present is VGG (or VGGNet), developed by the Visual
Geometry Group from Oxford University. Though the group only achieved second place in
the ILSVRC classification task in 2014, their method influenced many later architectures.

Overview of the VGG architecture
Looking at the motivation of the VGG authors, and then their contributions, we will present
how the VGG architecture achieved higher accuracy with fewer parameters.

Motivation
AlexNet was a game changer, being the first CNN successfully trained for such a complex
recognition task and making several contributions that are still valid nowadays, such as the
following:

The use of a rectified linear unit (ReLU) as an activation function, which
prevents the vanishing gradient problem (explained later in this chapter), and
thus improving training (compared to using sigmoid or tanh)
The application of dropout to CNNs (with all the benefits covered in Chapter 3,
Modern Neural Networks)
The typical CNN architecture combining blocks of convolution and pooling
layers, with dense layers afterward for the final prediction
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The application of random transformations (image translation, horizontal
flipping, and more) to synthetically augment the dataset (that is, augmenting the
number of different training images by randomly editing the original
samples—see Chapter 7, Training on Complex and Scarce Datasets, for more
details)

Still, even back then, it was clear that this prototype architecture had room for
improvement. The main motivation of many researchers was to try going deeper (that is,
building a network composed of a larger number of stacked layers), despite the challenges
arising from this. Indeed, more layers typically means more parameters to train, making the
learning process more complex. As we will describe in the next paragraph, however, Karen
Simonyan and Andrew Zisserman from Oxford's VGG group tackled this challenge with
success. The method they submitted to ILSVRC 2014 reached a top-5 error of 7.3%, dividing
the 16.4% error of AlexNet by more than two!

Top-5 accuracy is one of the main classification metrics of ILSVRC. It
considers that a method has predicted properly if the correct class is
among its five first guesses. Indeed, for many applications, it is fine to
have a method that's able to reduce a large number of class candidates to a
lower number (for instance, to leave the final choice between the
remaining candidates to an expert user). The top-5 metrics are a specific
case of the more generic top-k metrics.

Architecture
In their paper (Very Deep Convolutional Networks for Large-Scale Image Recognition, ArXiv,
2014), Simonyan and Zisserman presented how they developed their network to be deeper
than most previous ones. They actually introduced six different CNN architectures, from 11
to 25 layers deep. Each network is composed of five blocks of several consecutive
convolutions followed by a max-pooling layer and three final dense layers (with dropout
for training). All the convolutional and max-pooling layers have SAME for padding. The
convolutions have s = 1 for stride, and are using the ReLU function for activation. All in all,
a typical VGG network is represented in the following diagram:

Figure 4.1: VGG-16 architecture
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The two most performant architectures, still commonly used nowadays, are called VGG-16
and VGG-19. The numbers (16 and 19) represent the depth of these CNN architectures; that
is, the number of trainable layers stacked together. For example, as shown in Figure 4.1,
VGG-16 contains 13 convolutional layers and 3 dense ones, hence a depth of 16 (excluding
the non-trainable operations; that is, the 5 max-pooling and 2 dropout layers). The same
goes for VGG-19, which is composed of three additional convolutions. VGG-16 has
approximately 138 million parameters, and VGG-19 has 144 million. Those numbers are
quite high, although, as we will demonstrate in the following section, the VGG researchers
took a new approach to keep these values in check despite the depth of their architecture.

Contributions – standardizing CNN architectures
In the following paragraphs, we will summarize the most significant contributions
introduced by these researchers while further detailing their architecture.

Replacing large convolutions with multiple smaller ones
The authors began with a simple observation—a stack of two convolutions with 3 × 3
kernels has the same receptive field as a convolution with 5 × 5 kernels (refer to Chapter 3,
Modern Neural Networks, for the effective receptive field (ERF) formula).

Similarly, three consecutive 3 × 3 convolutions result in a 7 × 7 receptive field, and five 3 × 3
operations result in an 11 × 11 receptive field. Therefore, while AlexNet has large filters (up
to 11 × 11), the VGG network contains more numerous but smaller convolutions for a
larger ERF. The benefits of this change are twofold:

It decreases the number of parameters: Indeed, the N filters of an 11 × 11
convolution layer imply 11 × 11 × D × N = 121DN values to train just for their
kernels (for an input of depth D), while five 3 × 3 convolutions have a total of 1 ×
(3 × 3 × D × N) + 4 × (3 × 3 × N × N) = 9DN + 36N2 weights for their kernels. As
long as N < 3.6D, this means fewer parameters. For instance, for N = 2D, the
number of parameters drops from 242D2 to 153D2 (refer to the previous
equations). This makes the network easier to optimize, as well as much lighter
(we invite you to look at the decrease for the replacements of the 7 × 7 and 5 × 5
convolutions).
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It increases the non-linearity: Having a larger number of convolution
layers—each followed by a non-linear activation function such
as ReLU—increases the networks' capacity to learn complex features (that is, by
combining more non-linear operations).

Overall, replacing larger convolutions with small, consecutive ones allowed the VGG
authors to effectively go deeper.

Increasing the depth of the feature maps
Based on another intuition, the VGG authors doubled the depth of the feature maps for
each block of convolutions (from 64 after the first convolution to 512). As each set is
followed by a max-pooling layer with a 2 × 2 window size and a stride of 2, the depth
doubles while the spatial dimensions are halved.

This allows the encoding of spatial information into more and more complex and
discriminative features for classification.

Augmenting data with scale jittering
Simonyan and Zisserman also introduced a data augmentation mechanism that they
named scale jittering. At each training iteration, they randomly scale the batched images
(from 256 pixels to 512 pixels for their smaller side) before cropping them to the proper
input size (224 × 224 for their ILSVRC submission). With this random transformation, the
network will be confronted with samples with different scales and will learn to properly
classify them despite this scale jittering (refer to Figure 4.2). The network becomes more
robust as a result, as it is trained on images covering a larger range of realistic
transformations.

Data augmentation is the procedure of synthetically increasing the size of
training datasets by applying random transformations to their images in
order to create different versions. Details and concrete examples are
provided in Chapter 7, Training on Complex and Scarce Datasets.

The authors also suggested applying random scaling and cropping at test time. The idea is
to generate several versions of the query image this way and to feed them all to the
network, with the intuition that it increases the chance of feeding content on a scale the
network is particularly used to. The final prediction is obtained by averaging the results for
each version.
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In their paper, they demonstrate how this process tends to also improve accuracy:

Figure 4.2: Example of scale jittering. Notice that it is common to not preserve the aspect ratio of the content to further transform the images

The same principle was previously used by the AlexNet authors. During
both training and testing, they were generating several versions of each
image with different combinations of cropping and flipping
transformations.

Replacing fully connected layers with convolutions
While the classic VGG architecture ends with several fully connected (FC) layers (such as
AlexNet), the authors suggest an alternative version. In this version, the dense layers are 
replaced by convolutional ones.

The first set of convolutions with larger kernels (7 × 7 and 3 × 3) reduces the spatial size of
the feature maps to 1 × 1 (with no padding applied beforehand) and increases their depth to
4,096. Finally, a 1 × 1 convolution is used with as many filters as classes to predict from
(that is, N = 1,000 for ImageNet). The resulting 1 × 1 × N vector is normalized with the
softmax function, and then flattened into the final class predictions (with each value of the
vector representing the predicted class probability).

1 × 1 convolutions are commonly used to change the depth of the input
volume without affecting its spatial structure. For each spatial position,
the new values are interpolated from all the depth values at that position.

Such a network without any dense layers is called a fully convolutional network (FCN).
As mentioned in Chapter 3, Modern Neural Networks, and as has been highlighted by the
VGG authors, FCNs can be applied to images of different sizes, with no need for cropping
beforehand.
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Interestingly, to achieve the best accuracy for ILSVRC, the authors trained
and used both versions (normal and FCN), once again averaging their
results to obtain the final predictions. This technique is named model
averaging and is frequently used in production.

Implementations in TensorFlow and Keras
Thanks to the efforts that the authors put into creating a clear architecture, VGG-16 and
VGG-19 are among the simplest classifiers to reimplement. Example code can be found in
the GitHub folder for this chapter, for educational purposes. However, in computer vision,
as in many domains, it is always preferable not to reinvent the wheel and to instead reuse
existing tools that are available. The following paragraphs present different
preimplemented VGG solutions that you can directly adapt and reuse.

The TensorFlow model
While TensorFlow itself does not offer any official implementation of the VGG
architectures, neatly implemented VGG-16 and VGG-19 networks are available in the
tensorflow/models GitHub repository (https:/ /github. com/ tensorflow/ models). This
repository, maintained by TensorFlow contributors, contains numerous well-curated state-
of-the-art or experimental models. It is often recommended that you should search this
repository when looking for a specific network.

We invite our readers to have a look at the VGG code there (currently available at https:/ /
github.com/tensorflow/ tensorflow/ blob/ master/ tensorflow/ contrib/ slim/ python/
slim/nets/vgg.py), as it reimplements the FCN version we described earlier.

The Keras model
The Keras API has an official implementation of these architectures, accessible via its
tf.keras.applications package (refer to the documentation at https:/ /www.
tensorflow.org/api_ docs/ python/ tf/ keras/ applications). This package contains 
several other well-known models and provides pre trained parameters for each (that is,
parameters saved from prior training on a specific dataset). For instance, you can
instantiate a VGG network with the following command:

vgg_net = tf.keras.applications.VGG16(
    include_top=True, weights='imagenet', input_tensor=None,
    input_shape=None, pooling=None, classes=1000)
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With these default arguments, Keras instantiates the VGG-16 network and loads the
persisted parameter values obtained after a complete training cycle on ImageNet. With this
single command, we have a network ready to classify images into the 1,000 ImageNet
categories. If we would like to retrain the network from scratch instead, we should
fix weights=None and Keras will randomly set the weights.

In Keras terminology, the top layers correspond to the final consecutive
dense layers. Therefore, if we set include_top=False, the VGG dense
layers will be excluded, and the network's outputs will be the feature
maps of the last convolution/max-pooling block. This can be useful if we
want to reuse the pre trained VGG network to extract meaningful features
(which can be applied to more advanced tasks), and not just for
classification. The pooling function parameter can be used in those cases
(that is, when include_top=False) to specify an optional operation to
be applied to the feature maps before returning them (pooling='avg' or
pooling='max' to apply a global average- or max- pooling).

GoogLeNet and the inception module
Developed by researchers at Google, the architecture we will now present was also applied
to ILSVRC 2014 and won first place for the classification task ahead of VGGNet.
GoogLeNet (for Google and LeNet, as an homage to this pioneering network) is structurally
very different from its linear challenger, introducing the notion of inception blocks (the
network is also commonly called an inception network).

Overview of the GoogLeNet architecture
As we will see in the following section, the GoogLeNet authors, Christian Szegedy and
others, approached the conception of a more efficient CNN from a very different angle than
the VGG researchers (Going Deeper with Convolutions, Proceedings of the CVPR IEEE
conference, 2014).

Motivation
While VGG's authors took AlexNet and worked on standardizing and optimizing its
structure in order to obtain a clearer and deeper architecture, researchers at Google took a
different approach. Their first consideration, as mentioned in the paper, was the
optimization of the CNN computational footprint.
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Indeed, in spite of careful engineering (refer to VGG), the deeper CNNs are, the larger their
number of trainable parameters and their number of computations per prediction become
(it is costly with respect to memory and time). For instance, VGG-16 weighs approximately
93 MB (in terms of parameter storage), and the VGG submission for ILSVRC took two to
three weeks to train on four GPUs. With approximately 5 million parameters, GoogLeNet is
12 times lighter than AlexNet and 21 times lighter than VGG-16, and the network was
trained within a week. As a result, GoogLeNet—and more recent inception networks—can
even run on more modest machines (such as smartphones), which contributed to their
lasting popularity.

We have to keep in mind that, despite this impressive reduction in the numbers of
parameters and operations, GoogLeNet did win the classification challenge in 2014 with a
top-5 error of 6.7% (against 7.3% with VGG). This performance is the result of the second
target of Szegedy and others—the conception of a network that was not only deeper but
also larger, with blocks of parallel layers for multiscale processing. While we will detail this
solution later in this chapter, the intuition behind it is simple. Building a CNN is a complex,
iterative task. How do we know which layer (such as convolutional or pooling) should be
added to the stack in order to improve the accuracy? How do we know which kernel size
would work best for a given layer? After all, kernels of different sizes will not react to
features of the same scale. How can we avoid such a trade-off? A solution, according to the
authors, is to use the inception modules they developed, composed of several different layers
working in parallel.

Architecture
As shown in Figure 4.3, GoogLeNet architecture is not as straightforward as the previous
architectures we studied, although it can be analyzed region by region. The input images
are first processed by a classic series of convolutional and max-pooling layers. Then, the
information goes through a stack of nine inception modules. These modules (often called
subnetworks; further detailed in Figure 4.4), are blocks of layers stacked vertically and
horizontally. For each module, the input feature maps are passed to four parallel sub-blocks
composed of one or two different layers (convolutions with different kernel sizes and max-
pooling).
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The results of these four parallel operations are then concatenated together along the depth
dimension and into a single feature volume:

Figure 4.3: GoogLeNet architecture. The inception modules are detailed in Figure 4.4

In the preceding figure, all the convolutional and max-pooling layers have SAME for
padding. The convolutions have s = 1 for stride if unspecified and are using the ReLU
function for activation.

This network is composed of several layer blocks sharing a similar structure with parallel
layers—the inception modules. For instance, the first inception module, represented in
Figure 4.3, receives a feature volume of size 28 × 28 × 192 for input. Its first parallel sub-
block, composed of a single 1 × 1 convolution output (N = 64 and s = 1), thus generates a
28 × 28 × 64 tensor. Similarly, the second sub-module, composed of two convolutions,
outputs a 28 × 28 × 128 tensor; and the two remaining ones output a 28 × 28 × 32 and a 28 ×
28 × 32 feature volume, respectively. Therefore, by stacking these four results together
along the last dimension, the first inception module outputs a 28 × 28 × 256 tensor, which is
then passed to the second module, and so on. In the following diagram, the naive solution
is represented on the left, and the module used in GoogLeNet (that is, the inception module
v1) is shown on the right (note that in GoogLeNet, the number of filters N increases the
deeper the module is):
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Figure 4.4: Inception modules: naive versus actual

The features of the last module are average, pooled from 7 × 7 × 1,024 to 1 × 1 × 1,024, and
are finally densely converted into the prediction vector. As shown in Figure 4.3, the network
is further composed of two auxiliary branches, also leading to predictions. Their purpose
will be detailed in the next section.

In total, GoogLeNet is a 22-layer deep architecture (counting the trainable layers only), with
a total of more than 60 convolutional and FC layers. And yet, this much larger network has
12 times fewer parameters than AlexNet.

Contributions – popularizing larger blocks and
bottlenecks
The low number of parameters, as well as the network's performance, are the results of 
several concepts implemented by the GoogLeNet authors. We will cover the main ones in
this section.

In this section, we will present only the key concepts differentiating the
inception networks from the ones we introduced previously. Note that the
GoogLeNet authors reapplied several other techniques that we have
already covered, such as the prediction of multiple crops for each input
image and the use of other image transformations during training.

Capturing various details with inception modules
Introduced by Min Lin and others in their influential Network in Network (NIN) paper in
2013, the idea of having a CNN composed of sub-network modules was adapted and fully
exploited by the Google team. As previously mentioned and shown in Figure 4.4, the basic
inception modules they developed are composed of four parallel layers—three
convolutions with filters of size 1 × 1, 3 × 3, and 5 × 5, respectively, and one max-pooling
layer with stride 1. The advantages of this parallel processing, with the results concatenated
together after, are numerous.
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As explained in the Motivation sub-section, this architecture allows for the multiscale
processing of the data. The results of each inception module combine features of different
scales, capturing a wider range of information. We do not have to choose which kernel size
may be the best (such a choice would require several iterations of training and testing
cycles), that is, the network learns by itself which convolutions to rely on more for each
module.

Additionally, while we presented how vertically stacking layers with non-linear activation
functions positively affects a network's performance, this is also true for horizontal
combinations. The concatenation of features mapped from different layers further adds to
the non-linearity of the CNN.

Using 1 x 1 convolutions as bottlenecks
Though not a contribution per se, Szegedy et al. made the following technique notorious by
efficiently applying it to their network.

As previously mentioned in the Replacing fully connected layers with convolutions section, 1 ×
1 convolutional layers (with a stride of 1) are often used to change the overall depth of
input volumes without affecting their spatial structures. Such a layer with N filters would
take an input of shape H × W × D and return an interpolated H × W × N tensor. For each
pixel in the input image, its D channel values will be interpolated by the layer (according to
its filter weights) into N channel values.

This property can be applied to reduce the number of parameters required for larger
convolutions by compressing the features' depth beforehand (using N < D). This technique
basically uses 1 × 1 convolutions as bottlenecks (that is, as intermediary layers reducing the
dimensionality and, thus, the number of parameters). Since activations in neural networks
are often redundant or left unused, such bottlenecks usually barely affect the performance
(as long as they do not drastically reduce the depth). Moreover, GoogLeNet has its parallel
layers to compensate for the depth reduction. Indeed, in inception networks, bottlenecks
are present in every module, before all larger convolutions and after max-pooling
operations, as illustrated in Figure 4.4.
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Given the 5 × 5 convolution in the first inception module (taking as input a 28 × 28 × 192
volume) for example, the tensor containing its filters would be of the dimension 5 × 5 × 192
× 32 in the naive version. This represents 153,600 parameters just for this convolution. In the
first version of the inception module (that is, with bottlenecks), a 1 × 1 convolution
is introduced before the 5 × 5 one, with N = 16. As a result, the two convolutions require a
total of 1 × 1 × 192 × 16 + 5 × 5 × 16 × 32 = 15,872 trainable values for their kernels. This is 10
times fewer parameters than the previous version (just for this single 5 × 5 layer), for the
same output size! Furthermore, as mentioned already, the addition of layers with a non-
linear activation function (ReLU) further improves the networks' ability to grasp complex
concepts.

We are presenting GoogLeNet as submitted to ILSVRC 2014 in this
chapter. More commonly named Inception V1, this architecture has been
refined by its authors since then. Inception V2 and Inception V3 contain
several improvements, such as replacing the 5 × 5 and 7 × 7 convolutions
by smaller ones (as done in VGG), improving the bottlenecks'
hyperparameters to reduce the information loss, and adding BatchNorm
layers.

Pooling instead of fully connecting
Another solution used by the inception authors to reduce the number of parameters was to
use an average-pooling layer instead of a fully connected one after the last convolutional
block. With a 7 × 7 window size and stride of 1, this layer reduces the feature volume from
7 × 7 × 1,024 to 1 × 1 × 1,024 without any parameter to train. A dense layer would have
added (7 × 7 × 1,024) × 1,024 = 51,380,224 parameters. Though the network loses a bit in
expressiveness with this replacement, the computational gain is enormous (and the
network already contains enough non-linear operations to capture the information it needs
for the final prediction).

The last and only FC layer in GoogLeNet has 1,024 × 1,000 = 1,024,000
parameters, a fifth of the total number the network has!

Fighting vanishing gradient with intermediary losses
As briefly mentioned when introducing the architecture, GoogLeNet has two auxiliary
branches at training time (removed after), also leading to predictions.
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Their purpose is to improve the propagation of the loss through the network during
training. Indeed, deeper CNNs are often plagued with vanishing gradient. Many CNN
operations (for instance, sigmoid) have derivatives with small amplitudes (below one).
Therefore, the higher the number of layers, the smaller the product of the derivatives
becomes when backpropagating (as more values below one are multiplied together, the
closer to zero the result will become). Often, the gradient simply vanishes/shrinks to zero
when reaching the first layers. Since the gradient values are directly used to update the
parameters, these layers won't effectively learn if the gradient is too small.

The opposite phenomenon—the exploding gradient problem—can also
happen with deeper networks. When operations whose derivatives can
take on larger magnitudes are used, their product during
backpropagation can become so big that it makes the training unstable
(with huge, erratic weight updates) or it can even sometimes overflow
(NaN values).

The down-to-earth, yet effective, solution to this problem implemented here is to reduce the
distance between the first layers and predictions, by introducing additional classification
losses at various network depths. If the gradient from the final loss cannot flow properly to
the first layers, these will still be trained to help with classification thanks to the closer
intermediary losses. Incidentally, this solution also slightly improves the robustness of the
layers affected by multiple losses, as they must learn to extract discriminative features that
are not only useful to the main network, but also to the shorter branches.

Implementations in TensorFlow and Keras
While the inception architecture may look complex to implement at first glance, we already
have most of the tools to do so. Moreover, several pretrained versions are also made
available by TensorFlow and Keras.

Inception module with the Keras Functional API
The networks we have implemented so far were purely sequential, with a single path from
inputs to predictions. The inception model differs from those, with its multiple parallel
layers and branches. This gives us the opportunity to demonstrate that such operational
graphs are not much more difficult to instantiate with the available APIs. In the following
section, we will write an inception module using the Keras Functional API (refer to the
documentation at https:/ / keras. io/ getting- started/ sequential- model- guide/ ).
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So far, we have mostly been using the Keras Sequential API, which is not well-adapted for
multipath architectures (as its name implies). The Keras Functional API is closer to the
TensorFlow paradigm, with Python variables for the layers being passed as parameters to
the next ones to build a graph. The following code presents a simplistic model
implemented with both APIs:

from keras.models import Sequential, Model
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Input

# Sequential version:
model = Sequential()
model.add(Conv2D(32, kernel_size=(5, 5), input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(10, activation='softmax'))

# Functional version:
inputs = Input(shape=input_shape)
conv1 = Conv2D(32, kernel_size=(5, 5))(inputs)
maxpool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
predictions = Dense(10, activation='softmax')(Flatten()(maxpool1))
model = Model(inputs=inputs, outputs=predictions)

With the functional API, a layer can easily be passed to multiple others, which is what we
need for the parallel blocks of the inception modules. Their results can then be merged
together using a concatenate layer (refer to the documentation at https:/ /keras. io/
layers/merge/#concatenate_ 1). Therefore, the naive inception block presented in Figure
4.4 can be implemented as follows:

from keras.layers import Conv2D, MaxPooling2D, concatenate

def naive_inception_block(previous_layer, filters=[64, 128, 32]):
    conv1x1 = Conv2D(filters[0], kernel_size=(1, 1), padding='same',
                     activation='relu')(previous_layer)
    conv3x3 = Conv2D(filters[1], kernel_size=(3, 3), padding='same',
                     activation='relu')(previous_layer)
    conv5x5 = Conv2D(filters[2], kernel_size=(5, 5), padding='same',
                     activation='relu')(previous_layer)
    max_pool = MaxPooling2D((3, 3), strides=(1, 1),
                            padding='same')(previous_layer)
    return concatenate([conv1x1, conv3x3, conv5x5, max_pool], axis=-1)
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We will leave it to you to adapt this code to implement the proper modules for Inception
V1 by adding the bottleneck layers.

TensorFlow model and TensorFlow Hub
Google offers several scripts and tutorials explaining how to directly use its inception
networks, or how to retrain them for new applications. The directory dedicated to this
architecture in the tensorflow/models Git repository (https:/ /github. com/ tensorflow/
models/tree/master/ research/ inception) is also rich and well-documented. Moreover, a
pretrained version of Inception V3 is available on TensorFlow Hub, which gives us the
opportunity to introduce this platform.

TensorFlow Hub is a repository of pretrained models. In a similar way to how Docker
allows people to easily share and reuse software packages, removing the need to
reconfigure distributions, TensorFlow Hub gives access to pretrained models so that people
do not have to spend time and resources reimplementing and retraining. It combines a
website (https:/ /tfhub. dev) where people can search for specific models (depending, for
example, on the target recognition task), and a Python package to easily download and
start using these models. For instance, we can fetch and set up an Inception V3 network as
follows:

import tensorflow as tf
import tensorflow_hub as hub

url = "https://tfhub.dev/google/tf2-preview/inception_v3/feature_vector/2"
hub_feature_extractor = hub.KerasLayer( # TF-Hub model as Layer
    url, # URL of the TF-Hub model (here, an InceptionV3 extractor)
    trainable=False, # Flag to set the layers as trainable or not
    input_shape=(299, 299, 3), # Expected input shape (found on tfhub.dev)
    output_shape=(2048,), # Output shape (same, found on the model's page)
    dtype=tf.float32) # Expected dtype

inception_model = Sequential(
    [hub_feature_extractor, Dense(num_classes, activation='softmax')],
    name="inception_tf_hub")
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Though this code is quite succinct, a lot is happening. A preliminary step was to browse the
tfhub.dev website and decide on a model there. On the page presenting the selected model
(https://tfhub.dev/ google/ tf2- preview/ inception_ v3/feature_ vector/ 2; stored in
model_url), we can read that the inception model we chose is defined as an image feature
vector that expects 299 × 299 × 3 inputs, among other details. To use a TensorFlow Hub
model, we need to know how to interface with it.

The image feature vector type tells us that this network returns extracted features; that is, the
results of the last convolutional block before the dense operations. With such a model, it is
up to us to add the final layers (for instance, so that the output size corresponds to the
number of considered classes).

The latest versions of the TensorFlow Hub interface seamlessly with Keras, and a complete
pretrained TensorFlow Hub model can be fetched and instantiated as a Keras layer thanks
to tensorflow_hub.KerasLayer(model_url, trainable, ...). Like any Keras
layer, it can then be used inside larger Keras models or TensorFlow estimators.

Though this may not seem as straightforward as using the Keras Applications API,
TensorFlow Hub has an exotic catalog of models, which is destined to increase over time.

One of the Jupyter notebooks available in the Git repository is dedicated
to TensorFlow Hub and its usage.

The Keras model
As with VGG, Keras provides an implementation of Inception V3, optionally, with weights
pretrained on ImageNet. tf.keras.applications.InceptionV3() (refer to the
documentation at https:/ / keras. io/ applications/ #inceptionv3) has the same signature
as the one presented for VGG.
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We have mentioned AlexNet, the winning solution of ILSVRC 2012, as
well as VGGNet and GoogLeNet, which prevailed during the 2014
edition. You might be wondering who won in 2013. The challenge that
year was dominated by the ZFNet architecture (named after its creators,
Matthew Zeiler and Rob Fergus from New York University). If ZFNet is
not covered in this chapter, it is because its architecture was not
particularly innovative, and has not really been reused afterward.

However, Zeiler and Fergus' significant contribution lay somewhere
else—they developed and applied several operations to the visualization
of CNNs (such as unpooling and transposed convolution, also known
as deconvolution, which are both detailed in Chapter 6, Enhancing and
Segmenting Images). Indeed, a common criticism of neural networks was
that they behave like black boxes, and that no one can really grasp why and
how they work so well. Zeiler and Fergus' work was an important first
step toward opening up CNNs to reveal their inner processes (such as
how they end up reacting to particular features and how they learn more
abstract concepts as they go deeper.) Visualizing how each layer of their
network reacted to specific images and contributed to the final prediction,
the authors were able to optimize its hyperparameters and thus improve
its performance (Visualizing and Understanding Convolutional Networks,
Springer, 2014).

Research toward understanding neural networks is still ongoing (for
instance, with a multitude of recent work capturing and analyzing the
attention of networks toward specific elements) and has already greatly
helped to improve current systems.

ResNet – the residual network
The last architecture we will address in this chapter won the 2015 edition of ILSVRC.
Composed of a new kind of module, the residual module, ResNet (residual network)
provides an efficient approach to creating very deep networks, beating larger models such
as Inception in terms of performance.
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Overview of the ResNet architecture
Developed by Kaiming He et al., researchers at Microsoft, the ResNet architecture is an
interesting solution to learning problems affecting CNNs. Following the structure of
previous sections, we will first clarify the author's targets and introduce their novel
architecture (refer to Deep Residual Learning for Image Recognition, Proceedings of the CVPR
IEEE conference, 2016).

Motivation
Inception networks demonstrated that going larger is a valid strategy in image
classification, as well as other recognition tasks. Nevertheless, experts still kept trying to
increase networks in order to solve more and more complex tasks. However, the question Is
learning better networks as easy as stacking more layers?, asked in the preamble of the paper
written by He et al., is justified.

We know already that the deeper a network goes, the harder it becomes to train it. But
besides the vanishing/exploding gradient problems (covered by other solutions already), He et
al. pointed out another problem that deeper CNNs face—performance degradation. It all
started with a simple observation—the accuracy of CNNs does not linearly increase with
the addition of new layers. A degradation problem appears as the networks' depth
increases. Accuracy starts saturating and even degrading. Even the training loss starts
decreasing when negligently stacking too many layers, proving that the problem is not
caused by overfitting. For instance, the authors compared the accuracy of an 18-layer-deep
CNN with a 34-layer one, showing that the latter performs worse than the shallower
version during and after training. In their paper, He et al. proposed a solution to build very
deep and performant networks.

With model averaging (applying ResNet models of various depths) and
prediction averaging (over multiple crops of each input image), the ResNet
authors reached a historically low 3.6% top-5 error rate for the ILSVRC
challenge. This was the first time an algorithm beat humans on that
dataset. Human performance had been measured by the challenge
organizers, with the best human candidate reaching a 5.1% error rate
(refer to ImageNet Large-Scale Visual Recognition Challenge, Springer, 2015).
Achieving super-human performance on such a task was a huge milestone
for deep learning. We should, however, keep in mind that, while
algorithms can expertly solve a specific task, they still do not have the
human ability to extend that knowledge to others, or to grasp the context
of the data they are to deal with.
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Architecture
Like Inception, ResNet has known several iterative improvements to its architecture, for
instance, with the addition of bottleneck convolutions or the use of smaller kernels. Like
VGG, ResNet also has several pseudo-standardized versions characterized by their depth:
ResNet-18, ResNet-50, ResNet-101, ResNet-152, and others. Indeed, the winning ResNet
network for ILSVRC 2015 vertically stacked 152 trainable layers (with a total of 60 million
parameters), which was an impressive feat at that time:

Figure 4.5: Exemplary ResNet architecture

In the preceding diagram, all the convolutional and max-pooling layers have SAME for
padding, and for stride s = 1 if unspecified. Batch normalization is applied after each 3 × 3
convolution (on the residual path, in gray), and 1 × 1 convolutions (on the mapping path in
black) have no activation function (identity).

As we can see in Figure 4.5, the ResNet architecture is slimmer than the Inception
architecture, though it is similarly composed of layer blocks with parallel operations.
Unlike Inception, where each parallel layer non-linearly processes the input information,
ResNet blocks are composed of one non-linear path, and one identity path. The former
(represented by the thinner gray arrows in Figure 4.5) applies a couple of convolutions with
batch normalization and ReLU activation to the input feature maps. The latter (represented
by the thicker black arrows) simply forward the features without applying any
transformation.

The last statement is not always true. As shown in Figure 4.5, 1 × 1
convolutions are applied in order to adapt the depth of the features, when
the depth is increased in parallel by the non-linear branches. On those
occasions, to avoid a large increase in the number of parameters, the
spatial dimensionality is also reduced on both sides using a stride of s = 2.
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As in inception modules, the feature maps from each branch (that is, the transformed
features and the original ones) are merged together before being passed to the next block.
Unlike inception modules, however, this merging is not performed through depth
concatenation, but through element-wise addition (a simple operation that does not require
any additional parameters). We will cover, in the following section, the benefits of these
residual blocks.

Note that, in most implementations, the last 3 × 3 convolution of each
residual block is not followed directly by ReLU activation. Instead, the
non-linear function is applied after merging with the identity branch is
done.

Finally, the features from the last block are average-pooled and densely converted into
predictions, as in GoogLeNet.

Contributions – forwarding the information more deeply
Residual blocks have been a significant contribution to machine learning and computer
vision. In the following section, we will cover the reasons for this.

Estimating a residual function instead of a mapping
As the ResNet authors pointed out, the degradation phenomenon would not happen if
layers could easily learn identity mapping (that is, if a set of layers could learn weights so
that their series of operations finally return the same tensors as the input layers).

Indeed, the authors argue that, when adding some layers on top of a CNN, we should at
least obtain the same training/validation errors if these additional layers were able to
converge to the identity function. They would learn to at least pass the result of the original
network without degrading it. Since that is not the case—as we can often observe a
degradation—it means that identity mapping is not easy to learn for CNN layers.

This led to the idea of introducing residual blocks, with two paths:

One path further processes the data with some additional convolutional layers
One path performs the identity mapping (that is, forwarding the data with no
changes)
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We may intuitively grasp how this can solve the degradation problem. When adding a
residual block on top of a CNN, its original performance can at least be preserved by
setting the weights of the processing branch to zero, leaving only the predefined identity
mapping. The processing path will only be considered if it benefits loss minimization.

The data forwarding path is usually called skip or shortcut. The processing one is 
commonly called residual path, since the output of its operations is then added to the 
original input, with the magnitude of the processed tensor being much smaller than the
input one when the identity mapping is close to optimal (hence, the term residual). Overall,
this residual path only introduces small changes to the input data, making it possible to
forward patterns to deeper layers.

In their paper, He et al. demonstrate that their architecture not only tackles the degradation
problem, but their ResNet models achieve better accuracy than traditional ones for the
same number of layers.

Going ultra-deep
It is also worth noting that residual blocks do not contain more parameters than traditional
ones, as the skip and addition operations do not require any. They can, therefore, be
efficiently used as building blocks for ultra-deep networks.

Besides the 152-layer network applied to the ImageNet challenge, the authors illustrated
their contributions by training an impressive 1,202-layer one. They reported no difficulty
training such a massive CNN (although its validation accuracy was slightly lower than for
the 152-layer network, allegedly because of overfitting).

More recent works have been exploring the use of residual computations to build deeper
and more efficient networks, such as Highway networks (with a trainable switch value to
decide which path should be used for each residual block) or DenseNet models (adding
further skip connections between blocks).

Implementations in TensorFlow and Keras
As with previous architectures, we already have the tools needed to reimplement ResNet
ourselves, while also having direct access to preimplemented/pretrained versions.
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Residual blocks with the Keras Functional API
As practice, let's implement a basic residual block ourselves. As shown in Figure 4.5, the
residual path consists of two convolutional layers, each one followed by batch
normalization. The ReLU activation function is applied directly after the first convolution.
For the second, the function is only applied after merging with the other path. Using the
Keras Functional API, the residual path can thus be implemented in a matter of five or six
lines, as demonstrated in the following code.

The shortcut path is even simpler. It contains either no layer at all, or a single 1 × 1
convolution to reshape the input tensor when the residual path is altering its dimensions
(for instance, when a larger stride is used).

Finally, the results of the two paths are added together, and the ReLU function is applied to
the sum. All in all, a basic residual block can be implemented as follows:

from tf.keras.layers import Activation, Conv2D, BatchNormalization, add

def residual_block_basic(x, filters, kernel_size=3, strides=1):
    # Residual Path:
    conv_1 = Conv2D(filters=filters, kernel_size=kernel_size,
                    padding='same', strides=strides)(x)
    bn_1 = BatchNormalization(axis=-1)(conv_1)
    act_1 = Activation('relu')(bn_1)
    conv_2 = Conv2D(filters=filters, kernel_size=kernel_size,
                    padding='same', strides=strides)(act_1)
    residual = BatchNormalization(axis=-1)(conv_2)
    # Shortcut Path:
    shortcut = x if strides == 1 else Conv2D(
        filters, kernel_size=1, padding='valid', strides=strides)(x)
    # Merge and return :
    return Activation('relu')(add([shortcut, residual]))

A more elegant function is presented in one of the Jupyter notebooks. This
notebook also contains a complete implementation of the ResNet
architecture and a brief demonstration of a classification problem.

The TensorFlow model and TensorFlow Hub
Like the Inception networks, ResNet ones have their own official implementation provided
in the tensorflow/models Git repository, as well as their own pretrained TensorFlow
Hub modules.
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We invite you to check out the official tensorflow/models
implementation, as it offers several types of residual blocks from more
recent research efforts.

The Keras model
Finally, Keras once again provides its own ResNet implementations—for instance,
tf.keras.applications.ResNet50() (refer to the documentation at https:/ /keras.
io/applications/#resnet50)—with the option to load parameters pretrained on
ImageNet. These methods have the same signature as previously covered Keras
applications.

The complete code for the usage of this Keras application is also provided
in the Git repository.

The list of CNN architectures presented in this chapter does not pretend to be exhaustive. It
has been curated to cover solutions both instrumental to the computer vision domain and
of pedagogical value.

As research in visual recognition keeps moving forward at a fast pace, more advanced
architectures are being proposed, building upon previous solutions (as Highway and
DenseNet methods do for ResNet, for instance), merging them (as with the Inception-
ResNet solution), or optimizing them for particular use cases (such as the lighter
MobileNet, which was made to run on smartphones). It is, therefore, always a good idea to
check what the state of the art has to offer (for example, on official repositories or research
journals) before trying to reinvent the wheel.

Leveraging transfer learning
This idea of reusing knowledge provided by others is not only important in computer
science. The development of human technology over the millennia is the result of our
ability to transfer knowledge from one generation to another, and from one domain to
another. Many researchers believe that applying this guidance to machine learning could be
one of the keys to developing more proficient systems that will be able to solve new tasks
without having to relearn everything from scratch.
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Therefore, this section will present what transfer learning means for artificial neural
networks, and how it can be applied to our models.

Overview
We will first introduce what transfer learning is and how it is performed in deep learning,
depending on the use cases.

Definition
In the first part of this chapter, we presented several well-known CNNs, developed for the
ImageNet classification challenge. We mentioned that these models are commonly
repurposed for a broader range of applications. In the following pages, we will finally
elaborate on the reasons behind this reconditioning and how it is performed.

Human inspiration
Like many developments in machine learning, transfer learning is inspired by our own
human way of tackling complex tasks and gathering knowledge.

As mentioned in the introduction of this section, the first inspiration is our ability as a
species to transfer knowledge from one individual to another. Experts can efficiently
transfer the precious knowledge they have gathered over the years to a large number of
students through oral or written teaching. By harnessing the knowledge that has been
accumulated and distilled generation after generation, human civilizations have been able
to continuously refine and extend their technical abilities. Phenomena that took millennia
for our ancestors to understand— such as human biology, the solar system, and
more—became common knowledge.

Furthermore, as individuals, we also have the ability to transfer some expertise from one
task to another. For example, people mastering one foreign language have an easier time
learning similar ones. Similarly, people who have been driving a car for some time already
have knowledge of the rules of the road and some related reflexes, which are useful if they
want to learn how to drive other vehicles.
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These abilities to master complex tasks by building upon available knowledge, and to
repurpose acquired skills to similar activities, are central to human intelligence. Researchers
in machine learning dream of reproducing them.

Motivation
Unlike humans, most machine learning systems have been designed, so far, for single,
specific tasks. Directly applying a trained model to a different dataset would yield poor
results, especially if the data samples do not share the same semantic content (for instance,
MNIST digit images versus ImageNet photographs) or the same image quality/distribution
(for instance, a dataset of smartphone pictures versus a dataset of high-quality pictures). As
CNNs are trained to extract and interpret specific features, their performance will be
compromised if the feature distribution changes. Therefore, some transformations are
necessary to apply networks to new tasks.

Solutions have been investigated for decades. In 1998, Sebastian Thrun and Lorien Pratt
edited Learning to Learn, a book compiling the prevalent research stands on the topic. More
recently, in their Deep Learning book (http:/ /www. deeplearningbook. org/ contents/
representation.html on page 534, MIT Press), Ian Goodfellow, Yoshua Bengio, and Aaron
Courville defined transfer learning as follows:

[...] the situation where what has been learned in one setting (for example, distribution p1)
is exploited to improve generalization in another setting (say, distribution p2).

It makes sense for researchers to suppose that, for example, some of the features a CNN is
extracting to classify hand-written digits could be partially reused for the classification of
hand-written texts. Similarly, a network that learned to detect human faces could be
partially repurposed for the evaluation of facial expressions. Indeed, even though the
inputs (full images for face detection versus cropped ones for the new task) and outputs
(detection results versus classification values) are different, some of the network's layers are
already trained to extract facial features, which is useful for both tasks.
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In machine learning, a task is defined by the inputs provided (for
example, pictures from smartphones) and the expected outputs (for
example, prediction results for a specific set of classes). For instance,
classification and detection on ImageNet are two different tasks with the
same input images but different outputs.

In some cases, algorithms can target similar tasks (for example, pedestrian
detection) but have access to different sets of data (for example, CCTV
images from different locations, or from cameras of different quality).
These methods are thus trained on different domains (that is, data
distributions).

It is the goal of transfer learning to apply the knowledge either from one
task to another or from one domain to another. The latter type of transfer
learning is called domain adaptation and will be more specifically
covered in Chapter 7, Training on Complex and Scarce Datasets.

Transfer learning is especially interesting when not enough data is available to properly
learn the new task (that is, there are not enough image samples to estimate the
distribution). Indeed, deep learning methods are data hungry; they require large datasets
for their training. Such datasets—especially labeled ones for supervised learning—are often
tedious, if not impossible, to gather. For example, experts building recognition systems to
automate industries cannot go to every plant to take hundreds of pictures of every new
manufactured product and its components. They often have to deal with much smaller
datasets, which are not large enough for the CNNs to satisfactorily converge. Such
limitations explain the efforts to reuse knowledge acquired on well-documented visual
tasks for those other cases.

With their millions of annotated images from a large number of
categories, ImageNet—and, more recently, COCO—are particularly rich
datasets. It is assumed that CNNs trained on those have acquired quite an
expertise in visual recognition, hence the availability in Keras and
TensorFlow Hub of standard models (Inception, ResNet-50, and others)
already trained on these datasets. People looking for models to transfer
knowledge from commonly use these.
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Transferring CNN knowledge
So, how can you transfer some knowledge from one model to another? Artificial neural
networks have one advantage over human brains that facilitates this operation: they can be
easily stored and duplicated. The expertise of a CNN is nothing but the values taken by its
parameters after training—values that can easily be restored and transferred to similar
networks.

Transfer learning for CNNs mostly consists of reusing the complete or partial architecture
and weights of a performant network trained on a rich dataset to instantiate a new model
for a different task. From this conditioned instantiation, the new model can then be fine-
tuned; that is, it can be further trained on the available data for the new task/domain.

As we highlighted in the previous chapters, the first layers of a network tend to extract low-
level features (such as lines, edges, or color gradients), whereas final convolutional layers
react to more complex notions (such as specific shapes and patterns). For classification
tasks, the final pooling and/or fully connected layers then process these high-level feature
maps (often called bottleneck features) to make their class predictions.

This typical setup and related observations led to various transfer learning strategies.
Pretrained CNNs, with their final prediction layers removed, started being used as efficient
feature extractors. When the new task is similar enough to the ones these extractors were
trained for, they can directly be used to output pertinent features (the image feature
vector models on TensorFlow Hub are available for that exact purpose). These features can
then be processed by one or two new dense layers, which are trained to output the task-
related predictions. To preserve the quality of the extracted features, the layers of the
feature extractors are often frozen during this training phase; that is, their parameters are
not updated during the gradient descent. In other cases, when the tasks/domains are less
similar, some of the last layers of the feature extractors—or all of them—are fine-tuned; that
is, trained along with the new prediction layers on the task data. These different strategies
are further explained in the next paragraphs.

Use cases
In practice, which pretrained model should we reuse? Which layers should be frozen or
fine-tuned? The answers to these questions depend on the similarity between the target
task and the tasks that models have already been trained on, as well as the abundance of
training samples for the new application.
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Similar tasks with limited training data
Transfer learning is especially useful when you want to solve a particular task and do not
have enough training samples to properly train a performant model, but do have access to
a larger and similar training dataset.

The model can be pretrained on this larger dataset until convergence (or, if available and
pertinent, we can fetch an available pretrained model). Then, its final layers should be
removed (when the target task is different, that is, its output differs from the pretraining
task) and replaced with layers adapted to the target task. For example, imagine that we
want to train a model to distinguish between pictures of bees and pictures of wasps.
ImageNet contains images for these two classes, which could be used as a training dataset,
but their number is not high enough for an efficient CNN to learn without overfitting.
However, we could first train this network on the full ImageNet dataset to classify from the
1,000 categories to develop broader expertise. After this pretraining, its final dense layers
can be removed and replaced by layers configured to output predictions for our two target
classes.

As we mentioned earlier, the new model can finally be prepared for its task by freezing the
pretrained layers and by training only the dense ones on top. Indeed, since the target
training dataset is too small, the model would end up overfitting if we do not freeze its
feature extractor component. By fixing these parameters, we make sure that the network
keeps the expressiveness it developed on the richer dataset.

Similar tasks with abundant training data
The bigger the training dataset available for the target task, the smaller the chances of the
network overfitting if we completely retrain it. Therefore, in such cases, people commonly
unfreeze the latest layers of the feature extractor. In other words, the bigger the target
dataset is, the more layers there are that can be safely fine-tuned. This allows the network to
extract features that are more relevant to the new task, and thus to better learn how to
perform it.

The model has already been through a first training phase on a similar
dataset and is probably close to convergence already. Therefore, it is
common practice to use a smaller learning rate for the fine-tuning phase.
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Dissimilar tasks with abundant training data
If we have access to a rich enough training set for our application, does it even make sense
to use a pretrained model? This question is legitimate if the similarity between the original
and target tasks is too low. Pretraining a model, or even downloading pretrained weights,
can be costly. However, researchers demonstrated through various experiments that, in
most cases, it is better to initialize a network with pretrained weights (even from a
dissimilar use case) than with random ones.

Transfer learning makes sense when the tasks or their domains share at
least some basic similarities. For instance, images and audio files can both
be stored as two-dimensional tensors, and CNNs (such as ResNet ones)
are commonly applied to both. However, the models are relying on
completely different features for visual and audio recognition. It would
typically not benefit a model for visual recognition to receive the weights
from a network trained for an audio-related task.

Dissimilar tasks with limited training data
Finally, what if the target task is so specific that training samples are barely available and
using pretrained weights does not make much sense? First, it would be necessary to
reconsider applying or repurposing a deep model. Training such a model on a small dataset
would lead to overfitting, and a deep pretrained extractor would return features that are
too irrelevant for the specific task. However, we can still benefit from transfer learning if we
keep in mind that the first layers of CNNs react to low-level features. Instead of only
removing the final prediction layers of a pretrained model, we can also remove some of the
last convolutional blocks, which are too task-specific. A shallow classifier can then be
added on top of the remaining layers, and the new model can finally be fine-tuned.

Transfer learning with TensorFlow and Keras
To conclude this chapter, we will briefly cover how transfer learning can be performed with
TensorFlow and Keras. We invite our readers to go through the related Jupyter notebook in
parallel, to have transfer learning illustrated on classification tasks.
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Model surgery
Indirectly, we have already presented how standard pretrained models provided through
TensorFlow Hub and Keras applications can be fetched and easily transformed into feature
extractors for new tasks. However, it is also common to reuse non-standard networks; for
example, more specific state-of-the-art CNNs provided by experts, or custom models
already trained for some previous tasks. We will demonstrate how any models can be
edited for transfer learning.

Removing layers
The first task is to remove the final layers of the pretrained model to transform it into a
feature extractor. As usual, Keras makes this operation quite easy. For Sequential models,
the list of layers is accessible through the model.layers attribute. This structure has a
pop() method, which removes the last layer of the model. Therefore, if we know the
number of final layers we need to remove to transform a network into a specific feature
extractor (for instance, two layers for a standard ResNet model), this can be done as
follows:

for i in range(num_layers_to_remove):
    model.layers.pop()

In pure TensorFlow, editing an operational graph supporting a model is neither simple nor
recommended. However, we have to keep in mind that unused graph operations are not
executed at runtime. So, still having the old layers present in the compiled graph will not
affect the computational performance of the new model, as long as they are not called
anymore. Therefore, instead of removing layers, we simply need to pinpoint the last
layer/operation of the previous model we want to keep. If we somehow lost track of its
corresponding Python object, but know its name (for instance, by checking the graph in
Tensorboard), its representative tensor can be recovered by looping over the layers of the
model and checking their names:

for layer in model.layers:
    if layer.name == name_of_last_layer_to_keep:
        bottleneck_feats = layer.output
        break

However, Keras provides additional methods to simplify this process. Knowing the name
of the last layer to keep (for instance, after printing the names with model.summary()), a
feature extractor model can be built in a couple of lines:

bottleneck_feats = model.get_layer(last_layer_name).output
feature_extractor = Model(inputs=model.input, outputs=bottleneck_feats)



Influential Classification Tools Chapter 4

[ 144 ]

Sharing its weights with the original model, this feature-extraction model is ready for use.

Grafting layers
Adding new prediction layers on top of a feature extractor is straightforward (compared
with previous examples with TensorFlow Hub), as it is just a matter of adding new layers
on top of the corresponding model. For example, this can be done as follows, using the
Keras API:

dense1 = Dense(...)(feature_extractor.output) # ...
new_model = Model(model.input, dense1)

As we can see, through Keras, TensorFlow 2 makes it straightforward to shorten, extend, or
combine models!

Selective training
Transfer learning makes the training phase a bit more complex because we should first
restore the pretrained layers and define which ones should be frozen. Thankfully, several
tools are available that simplify these operations.

Restoring pretrained parameters
TensorFlow has some utility functions to warm-start estimators; that is, to initialize some of
their layers with pretrained weights. The following snippet tells TensorFlow to use the
saved parameters of a pretrained estimator for the new one for the layers sharing the same
name:

def model_function():
    # ... define new model, reusing pretrained one as feature extractor.

ckpt_path = '/path/to/pretrained/estimator/model.ckpt'
ws = tf.estimator.WarmStartSettings(ckpt_path)
estimator = tf.estimator.Estimator(model_fn, warm_start_from=ws)

The WarmStartSettings initializer takes an optional
vars_to_warm_start parameter, which can also be used to provide the
names of the specific variables (as a list or a regex) that you want to
restore from the checkpoint files (refer to the documentation for more
details at https:/ / www. tensorflow. org/ api_docs/ python/ tf/
estimator/ WarmStartSettings).
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With Keras, we can simply restore the pretrained model before its transformation for the
new task:

# Assuming the pretrained model was saved with `model.save()`:
model = tf.keras.models.load_model('/path/to/pretrained/model.h5')
# ... then pop/add layers to obtain the new model.

Although it is not exactly optimal to restore the complete model before removing some of
its layers, this solution has the advantage of being concise.

Freezing layers
In TensorFlow, the most versatile method for freezing layers consists of removing their
tf.Variable attributes from the list of variables passed to the optimizer:

# For instance, we want to freeze the model's layers with "conv" in their
name:
vars_to_train = model.trainable_variables
vars_to_train = [v for v in vars_to_train if "conv" in v.name]

# Applying the optimizer to the remaining model's variables:
optimizer.apply_gradients(zip(gradient, vars_to_train))

In Keras, layers have a .trainable attribute, which can simply be set to False in order to
freeze them:

for layer in feature_extractor_model.layers:
    layer.trainable = False  # freezing the complete extractor

Again, for complete transfer learning examples, we invite you to go through the Jupyter
notebooks.

Summary
Classification challenges, such as ILSVRC, are great playgrounds for researchers, leading to
the development of more advanced deep learning solutions. In their own way, each of the
architectures we detailed in this chapter became instrumental in computer vision and are
still applied to increasingly complex applications. As we will see in the following chapters,
their technical contributions inspired other methods for a wide range of visual tasks.
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Moreover, not only did we learn to reuse state-of-the-art solutions, but we also discovered
how algorithms themselves can benefit from the knowledge acquired from previous tasks.
With transfer learning, the performance of CNNs can be greatly improved for specific
applications. This is especially true for tasks such as object detection, which will be the
topic of our next chapter. Annotating datasets for object detection is more tedious than for
image-level recognition, so methods usually have access to smaller training datasets. It is,
therefore, important to keep transfer learning in mind as a solution to obtain efficient
models.

Questions
Which TensorFlow Hub module can be used to instantiate an inception classifier1.
for ImageNet?
How can you freeze the first three residual macro-blocks of a ResNet-50 model2.
from Keras applications?
When is transfer learning not recommended?3.

Further reading
Hands-On Transfer Learning with Python (https:/ /www. packtpub. com/big- data-
and-business- intelligence/ hands- transfer- learning- python), by Dipanjan
Sarkar, Raghav Bali, and Tamoghna Ghosh: This book covers transfer learning in
more detail, while applying deep learning to domains other than computer
vision.
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5
Object Detection Models

From self-driving cars to content moderation, detecting objects and their position in an
image is a canonical task in computer vision. In this chapter, we will introduce techniques
used for object detection. We will detail the architecture of two of the most prevalent
models among the current state of the art—You Only Look Once (YOLO) and Regions
with Convolutional Neural Networks (R-CNN).

The following topics will be covered in this chapter:

The history of object detection techniques
The main object detection approaches
Implementing fast object detection using YOLO architecture
Improving object detection using Faster R-CNN architecture
Using Faster R-CNN with the TensorFlow Object Detection API

Technical requirements
The code for this chapter is available in the form of notebooks at https:/ /github. com/
PacktPublishing/Hands- On- Computer- Vision- with- TensorFlow- 2/tree/ master/
Chapter05.

Introducing object detection
Object detection was briefly introduced in Chapter 1, Computer Vision and Neural Networks.
In this section, we will cover its history, as well as the core technical concepts.
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Background
Object detection, also called object localization, is the process of detecting objects and their
bounding boxes in an image. A bounding box is the smallest rectangle of an image that
fully contains an object.

A common input for an object detection algorithm is an image. A common output is a list of
bounding boxes and object classes. For each bounding box, the model outputs the
corresponding predicted class and its confidence.

Applications
The applications of object detection are numerous and cover many industries. For instance,
object detection can be used for the following purposes:

In self-driving cars, to locate other vehicles and pedestrians
For content moderation, to locate forbidden objects and their respective size
In health, to locate tumors or dangerous tissue using radiographs
In manufacturing, for assembly robots to put together or repair products
In the security industry, to detect threats or count people
In wildlife conservation, to monitor an animal population

These are just a few examples—more and more applications are being discovered every day
as object localization becomes more powerful.

Brief history
Historically, object detection relied on a classical computer vision technique: image
descriptors. To detect an object, for instance, a bike, you would start with several pictures
of this object. Descriptors corresponding to the bike would be extracted from the image.
Those descriptors would represent specific parts of the bike. When looking for this object,
the algorithm would attempt to find the descriptors again in the target images.
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To locate the bike in the image, the most commonly used technique was the floating
window. Small rectangular areas of the images are examined, one after the other. The part
with the most matching descriptors would be considered to be the one containing the
object. Over time, many variations were used.

This technique presented a few advantages: it was robust to rotation and color changes, it
did not require a lot of training data, and it worked with most objects. However, the level of
accuracy was not satisfactory.

While neural networks were already in use in the early 1990s (for detecting faces, hands, or
text in images), they started outperforming the descriptor technique on the ImageNet
challenge by a very large margin in the early 2010s.

Since then, performance has been improving steadily. Performance refers to how good the
algorithm is at the following things:

Bounding box precision: Providing the correct bounding box (not too large or
too narrow)
Recall: Finding all the objects (not missing any objects)
Class precision: Outputting the correct class for each object (not mistaking a cat
for a dog)

Performance improvement also means that the models are getting faster and faster at
computing results (for a specific input image size and at a specific computing power).
While early models took considerable time (more than a few seconds) to detect objects, they
can now be used in real time. In the context of computer vision, real time usually means
more than five detections per second.

Evaluating the performance of a model
To compare different object detection models, we need common evaluation metrics. For a
given test set, we run each model and gather its predictions. We use the predictions and the
ground truth to compute an evaluation metric. In this section, we will have a look at the
metrics used to evaluate object detection models.
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Precision and recall
While they are usually not used to evaluate object detection models, precision and recall
serve as a basis to compute other metrics. A good understanding of precision and recall is,
therefore, essential.

To measure precision and recall, we first need to compute the following for each image:

The number of true positives: True positives (TP) determine how many
predictions match with a ground truth box of the same class.
The number of false positives: False positives (FP) determine how many
predictions do not match with a ground truth box of the same class.
The number of false negatives: False negatives (FN) determine how many
ground truths do not have a matching prediction.

Then, precision and recall are defined as follows:

Notice that if the predictions exactly match all the ground truths, there will not be any false
positives or false negatives. Therefore, precision and recall will be equal to 1, a perfect
score. If a model too often predicts the presence of an object based on non-robust features,
precision will deteriorate because there will be many false positives. On the contrary, if a
model is too strict and considers an object detected only when precise conditions are met,
recall will suffer because there will be many false negatives.

Precision-recall curve
Precision-recall curve is used in many machine learning problems. The general idea is to 
visualize the precision and the recall of the model at each threshold of confidence. With 
every bounding box, our model will output a confidence—a number between 0 and 1
characterizing how confident the model is that a prediction is correct.

Because we do not want to keep the less confident predictions, we usually remove those
below a certain threshold, 𝑇. For instance, if 𝑇 = 0.4, we will not consider any prediction
with a confidence below this number.
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Moving the threshold has an impact on precision and on recall:

If T is close to 1: Precision will be high, but the recall will be low. As we filter out
many objects, we miss a lot of them—recall shrinks. As we only keep confident
predictions, we do not have many false positives—precision rises.
If T is close to 0: Precision will be low, but the recall will be high. As we keep
most predictions, we will not have any false negatives—recall rises. As our
model is less confident in its predictions, we will have many false
positives—precision shrinks.

By computing the precision and the recall at each threshold value between 0 and 1, we can
obtain a precision-recall curve, as shown here:

Figure 5.1: Precision-Recall curve

Choosing a threshold is a trade-off between accuracy and recall. If a
model is detecting pedestrians, we will pick a high recall in order not to
miss any passers-by, even if it means stopping the car for no valid reason
from time to time. If a model is detecting investment opportunities, we
will pick a high precision to avoid choosing the wrong opportunities, even
if it means missing some.
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Average precision and mean average precision
While the precision-recall curve can tell us a lot about the model, it is often more 
convenient to have a single number. Average precision (AP) corresponds to the area under
the curve. Since it is always contained in a one-by-one rectangle, AP is always between 0
and 1.

Average precision gives information about the performance of a model for a single class. To
get a global score, we use mean Average Precision (mAP). This corresponds to the mean of
the average precision for each class. If the dataset has 10 classes, we will compute the
average precision for each class and take the average of those numbers.

Mean average precision is used in at least two object detection
challenges—PASCAL Visual Object Classes (usually referred to as Pascal
VOC), and Common Objects in Context (usually referred to as COCO).
The latter is larger and contains more classes; therefore, the scores
obtained are usually lower than for the former.

Average precision threshold
We mentioned earlier that true and false positives were defined by the number of
predictions matching or not matching the ground truth boxes. However, how do you
decide when a prediction and the ground truth are matching? A common metric is the
Jaccard index, which measures how well two sets overlap (in our case, the sets of pixels
represented by the boxes). Also known as Intersection over Union (IoU), it is defined as
follows:

|𝐴| and |𝐵| are the cardinality of each set; that is, the number of elements they each
contain. 𝐴 ⋂ 𝐵 is the intersection of the two sets, and therefore the numerator |𝐴 ⋂ 𝐵|
represents the number of elements they have in common. Similarly, 𝐴 ⋃ 𝐵 is the union of
the sets (as seen in the following diagram), and therefore the denominator |𝐴 ⋃ 𝐵|
represents the total number of elements the two sets cover together:
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Figure 5.2: Intersection and union of boxes illustrated

Why compute such a fraction and not just use the intersection? While the intersection
would provide a good indicator of how much two sets/boxes overlap, this value is absolute
and not relative. Therefore, two big boxes would probably overlap by many more pixels
than two small boxes. This is why this ratio is used—it will always be between 0 (if the two
boxes do not overlap) and 1 (if two boxes overlap completely).

When computing the average precision, we say that two boxes overlap if their IoU is above
a certain threshold. The threshold usually chosen is 0.5.

For the Pascal VOC challenge, 0.5 is also used—we say that we use
mAP@0.5 (pronounced mAP at 0.5). For the COCO challenge, a slightly
different metric is used—mAP@[0.5:0.95]. This means that we compute
mAP@0.5, mAP@0.55, ..., mAP@0.95, and take the average. Averaging over
IoUs rewards models with better localization.

A fast object detection algorithm – YOLO
While the acronym may make you smile, YOLO is one of the fastest object detection 
algorithms available. The latest version, YOLOv3, can run at more than 170 frames per
second (FPS) on a modern GPU for an image size of 256 × 256. In this section, we will
introduce the theoretical concept behind its architecture.
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Introducing YOLO
First released in 2015, YOLO outperformed almost all other object detection architectures,
both in terms of speed and accuracy. Since then, the architecture has been improved several
times. In this chapter, we will draw our knowledge from the following three papers:

You Only Look Once: Unified, real-time object detection (2015), Joseph Redmon,
Santosh Divvala, Ross Girshick, and Ali Farhadi
YOLO9000: Better, Faster, Stronger (2016), Joseph Redmon and Ali Farhadi
YOLOv3: An Incremental Improvement (2018), Joseph Redmon and Ali Farhadi

For the sake of clarity and simplicity, we will not describe all the small details that allow
YOLO to reach its maximum performance. Instead, we will focus on the general
architecture of the network. We'll provide an implementation of YOLO so that you can
compare our architecture with code. It is available in the chapter's repository.

This implementation has been designed to be easy to read and understand. We invite those
readers who wish to acquire a deep understanding of the architecture to first read this
chapter and then refer to the original papers and the implementation.

The main author of the YOLO paper maintains a deep learning framework
called Darknet (https:/ / github. com/ pjreddie/ darknet). This hosts the
official implementation of YOLO and can be used to reproduce the paper's
results. It is coded in C++ and is not based on TensorFlow.

Strengths and limitations of YOLO
YOLO is known for its speed. However, it has been recently outperformed in terms of
accuracy by Faster R-CNN (covered later in this chapter). Moreover, due to the way it
detects objects, YOLO struggles with smaller objects. For instance, it would have trouble
detecting single birds from a flock. As with most deep learning models, it also struggles to
properly detect objects that deviate too much from the training set (unusual aspect ratios or
appearance). Nevertheless, the architecture is constantly evolving, and those issues are
being worked on.

YOLO's main concepts
The core idea of YOLO is this: reframing object detection as a single regression problem.
What does this mean? Instead of using a sliding window or another complex technique, we
will divide the input into a w × h grid, as represented in this diagram:

https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
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Figure 5.3: An example involving a plane taking off. Here, w = 5, h = 5, and B = 2, meaning, in total, 5 × 5 × 2 = 50 potential boxes, but only 2 are shown in the image

For each part of the grid, we will define B bounding boxes. Then, our only task will be to
predict the following for each bounding box:

The center of the box
The width and height of the box
The probability that this box contains an object
The class of said object

Since all those predictions are numbers, we have therefore transformed the object detection
problem into a regression problem.

It is important to make a distinction between the grid cells that divide the
pictures into equal parts (w × h parts to be precise) and the bounding
boxes that will locate the objects. Each grid cell contains B bounding
boxes. Therefore, there will be w × h × B possible bounding boxes in the
end.

In practice, the concepts used by YOLO are a bit more complex than this. What if there are
several objects in one part of the grid? What if an object overlaps several parts of the grid?
More importantly, how do we choose a loss to train our model? We will now have a deeper
look at YOLO architecture.
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Inferring with YOLO
Because the architecture of the model can be quite hard to understand in one go, we will
split the model into two parts—inference and training. Inference is the process of taking an
image input and computing results. Training is the process of learning the weights of the
model. When implementing a model from scratch, inference cannot be used before the
model is trained. But, for the sake of simplicity, we are going to start with inference.

The YOLO backbone
Like most image detection models, YOLO is based on a backbone model. The role of this 
model is to extract meaningful features from the image that will be used by the final layers.
This is why the backbone is also called the feature extractor, a concept introduced
in Chapter 4, Influential Classification Tools. The general YOLO architecture is depicted here:

Figure 5.4: YOLO architecture summarized. Note that the backbone is exchangeable and that its architecture may vary

While any architecture can be chosen as a feature extractor, the YOLO paper employs a
custom architecture. The performance of the final model depends heavily on the choice of
the feature extractor's architecture.

The final layer of the backbone outputs a feature volume of size w × h × D, where w × h is
the size of the grid and D is the depth of the feature volume. For instance, for VGG-16, D =
512.
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The size of the grid, w × h, depends on two factors:

The stride of the complete feature extractor: For VGG-16, the stride is 16,
meaning that the feature volume output will be 16 times smaller than the input
image.
The size of the input image: Since the feature volume's size is proportional to
the size of the image, the smaller the input, the smaller the grid.

YOLO's final layer accepts the feature volume as an input. It is composed of convolutional
filters of size 1 × 1. As seen in Chapter 4, Influential Classification Tools, a convolutional layer
of size 1 × 1 can be used to change the depth of the feature volume without affecting its
spatial structure.

YOLO's layers output
YOLO's final output is a w × h × M matrix, where w × h is the size of the grid, and M
corresponds to the formula B × (C + 5), where the following applies:

B is the number of bounding boxes per grid cell.

C is the number of classes (in our example, we will use 20 classes).

Notice that we add 5 to the number of classes. This is because, for each bounding box, we
need to predict (C + 5) numbers:

tx and ty will be used to compute the coordinates of the center of the bounding
box.

tw and th will be used to compute the width and height of the bounding box.

c is the confidence that an object is in the bounding box.

p1, p2, ..., and pC are the probability that the bounding box contains an object of
class 1, 2, ..., C (where C = 20 in our example).
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This diagram summarizes how the output matrix appears:

Figure 5.5: Final matrix output of YOLO. In this example, B = 5, C = 20, w = 13, and h = 13. The size is 13 × 13 × 125

Before we explain how to use this matrix to compute the final bounding boxes, we need to 
introduce an important concept—anchor boxes.

Introducing anchor boxes
We mentioned that tx, ty, tw, and th are used to compute the bounding box coordinates. Why
not ask the network to output the coordinates directly (x, y, w, and h)? In fact, that is how it
was done in YOLO v1. Unfortunately, this resulted in a lot of errors because objects vary in
size.

Indeed, if most of the objects in the train dataset are big, the network will tend to predict w
and h as being very large. And when using the trained model on small objects, it will often
fail. To fix this problem, YOLO v2 introduced anchor boxes.
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Anchor boxes (also called priors) are a set of bounding box sizes that are decided upon
before training the network. For instance, when training a neural network to detect
pedestrians, tall and narrow anchor boxes would be picked. An example is shown here:

Figure 5.6: On the left are the three bounding box sizes picked to detect pedestrians. On the right is how we adapt one of the bounding boxes to match a pedestrian

A set of anchor boxes is usually small—from 3 to 25 different sizes in practice. As those
boxes cannot exactly match all the objects, the network is used to refine the closest anchor
box. In our example, we fit the pedestrian in the image with the closest anchor box and use
the neural network to correct the height of the anchor box. This is what tx, ty, tw, and th

correspond to—corrections to the anchor box.

When they were first introduced in the literature, anchor boxes were picked manually.
Usually, nine box sizes were used:

Three squares (small, medium, and large)
Three horizontal rectangles (small, medium, and large)
Three vertical rectangles (small, medium, and large)

However, in the YOLOv2 paper, the authors recognized that the sizes of anchor boxes are
different for each dataset. Therefore, before training the model, they recommend analyzing
the data to pick the size of the anchor boxes. To detect pedestrians, as previously, vertical
rectangles would be used. To detect apples, square anchor boxes would be used.
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How YOLO refines anchor boxes
In practice, YOLOv2 computes each final bounding box's coordinates using the following
formulas:

The terms of the preceding equation can be explained as follows:

tx , ty , tw , and th  are the outputs from the last layer.
bx , by , bw , and  bh are the position and size of the predicted bounding box,
respectively.
pw and ph represent the original size of the anchor box.
cx and cy are the coordinates of the current grid cell (they will be (0,0) for the top-
left box, (w - 1,0) for the top-right box, and (0, h - 1) for the bottom-left box).
exp is the exponential function.
sigmoid is the sigmoid function, described in Chapter 1, Computer Vision and
Neural Networks.

While this formula may seem complex, this diagram may help to clarify matters:

Figure 5.7: How YOLO refines and positions anchor boxes
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In the preceding diagram, we see that on the left, the solid line is the anchor box, and the
dotted line is the refined bounding box. On the right, the dot is the center of the bounding
box.

The output of the neural network, a matrix with raw numbers, needs to be transformed into
a list of bounding boxes. A simplified version of the code would look like this:

boxes = []
for row in range(grid_height):
    for col in range(grid_width):
        for b in range(num_box):
            tx, ty, tw, th = network_output[row, col, b, :4]
            box_confidence = network_output[row, col, b, 4]
            classes_scores = network_output[row, col, b, 5:]

            bx = sigmoid(tx) + col
            by = sigmoid(ty) + row

            # anchor_boxes is a list of dictionaries containing the size of
each anchor
            bw = anchor_boxes[b]['w'] * np.exp(tw)
            bh = anchors_boxes[b]['h'] * np.exp(th)

            boxes.append((bx, by, bw, bh, box_confidence, classes_scores))

This code needs to be run for every inference in order to compute bounding boxes for an
image. Before we can display the boxes, we need one more post-processing operation.

Post-processing the boxes
We end up with the coordinates and the size of the predicted bounding boxes, as well as
the confidence and the class probabilities. All we have to do now is to multiply the
confidence by the class probabilities and threshold them in order to only keep high
probabilities:

# Confidence is a float, classes is an array of size NUM_CLASSES
final_scores = box_confidence * classes_scores

OBJECT_THRESHOLD = 0.3
# filter will be an array of booleans, True if the number is above
threshold
filter = classes_scores >= OBJECT_THRESHOLD

filtered_scores = class_scores * filter
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Here is an example of this operation with a simple sample, with a threshold of 0.3 and a
box confidence (for this specific box) of 0.5:

CLASS_LABELS dog airplane bird elephant
classes_scores 0.7 0.8 0.001 0.1
final_scores 0.35 0.4 0.0005 0.05
filtered_scores 0.35 0.4 0 0

Then, if filtered_scores contains non-null values, this means we have at least one class
above the threshold. We keep the class with the highest score:

class_id = np.argmax(filtered_scores)
class_label = CLASS_LABELS[class_id]

In our example, class_label would be airplane.

Once we have applied this filtering to all of the bounding boxes in the grid, we end up with
all the information we need to draw the predictions. The following photograph shows what
we would obtain by doing so:

Figure 5.8: Example of the raw bounding box output being drawn over the image
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Numerous bounding boxes are overlapping. As the plane is covering several grid cells, it
has been detected more than once. To correct this, we need one last step in our post-
processing pipeline—non-maximum suppression (NMS).

NMS
The idea of NMS is to remove boxes that overlap the box with the highest probability. We
therefore remove boxes that are non-maximum. To do so, we sort all the boxes by
probability, taking the ones with the highest probability first. Then, for each box, we
compute the IoU with all the other boxes.

After computing the IoU between a box and the other boxes, we remove the ones with an
IoU above a certain threshold (the threshold is usually around 0.5-0.9).

With pseudo-code, this is what NMS would look like:

sorted_boxes = sort_boxes_by_confidence(boxes)
ids_to_suppress = []

for maximum_box in sorted_boxes:
    for idx, box in enumerate(boxes):
        iou = compute_iou(maximum_box, box)
        if iou > iou_threshold:
            ids_to_suppress.append(idx)

processed_boxes = np.delete(boxes, ids_to_suppress)

In practice, TensorFlow provides its own implementation of NMS,
tf.image.non_max_suppression(boxes, ...) (refer to the
documentation at https:/ /www.tensorflow. org/api_ docs/ python/ tf/
image/ non_ max_ suppression), which we recommend using (it is well
optimized and offers useful options). Also note that NMS is used in most
object detection model post-processing pipelines.

https://www.tensorflow.org/api_docs/python/tf/image/non_max_suppression
https://www.tensorflow.org/api_docs/python/tf/image/non_max_suppression
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After performing NMS, we obtain a much better result with a single bounding box, as
illustrated in the following photograph:

Figure 5.9: Example of the bounding boxes drawn over the image after NMS

YOLO inference summarized
Putting it all together, the YOLO inference comprises several smaller steps. YOLO's
architecture is illustrated in the following diagram:
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Figure 5.10: YOLO's architecture. In this example, we use two bounding boxes per grid cell

The YOLO inference process can be summarized as follows:

Accept an input image and compute a feature volume using a CNN backbone.1.
Use a convolutional layer to compute anchor box corrections, objectness scores,2.
and class probabilities.
Using this output, compute the coordinates of the bounding boxes.3.
Filter out the boxes with a low threshold, and post-process the remaining ones4.
using NMS.

At the conclusion of this process, we end up with the final predictions.

Since the whole process is composed of convolutions and filtering
operations, the network can accept images of any size and any ratio.
Hence, it is very flexible.

Training YOLO
We have outlined the process of inference for YOLO. Using pretrained weights provided
online, it is possible to instantiate a model directly and generate predictions. However, you
might want to train a model on a specific dataset. In this section, we will go through the
training procedure of YOLO.
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How the YOLO backbone is trained
As we mentioned earlier, the YOLO model is composed of two main parts—the backbone
and the YOLO head. Many architectures can be used for the backbone. Before training the
full model, the backbone is trained on a traditional classification task with the aid of
ImageNet using the transfer learning technique detailed in Chapter 4, Influential
Classification Tools. While we could train YOLO from scratch, it would take much more time
to do so.

Keras makes it very easy to use a pretrained backbone for our network:

input_image = Input(shape=(IMAGE_H, IMAGE_W, 3))
true_boxes = Input(shape=(1, 1, 1, TRUE_BOX_BUFFER , 4))

inception = InceptionV3(input_shape=(IMAGE_H, IMAGE_W,3),
weights='imagenet', include_top=False)

features = inception(input_image)
GRID_H, GRID_W =  inception.get_output_shape_at(-1)[1:3]
# print(grid_h, grid_w)
output = Conv2D(BOX * (4 + 1 + CLASS),
                        (1, 1), strides=(1,1),
                        padding='same',
                        name='DetectionLayer',
                        kernel_initializer='lecun_normal')(features)

output = Reshape((GRID_H, GRID_W, BOX, 4 + 1 + CLASS))(output)

In our implementation, we will employ the architecture presented in the YOLO paper
because it yields the best results. However, if you were to run your model on a mobile, you
might want to use a smaller model.

YOLO loss
As the output of the last layer is quite unusual, the corresponding loss will also be.
Actually, the YOLO loss is notoriously complex. To explain it, we will break the loss into
several parts, each corresponding to one kind of output returned by the last layer. The
network predicts multiple kinds of information:

The bounding box coordinates and size
The confidence that an object is in the bounding box
The scores for the classes
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The general idea of the loss is that we want it to be high when the error is high. The loss
will penalize the incorrect values. However, we only want to do so when it makes sense—if
a bounding box contains no objects, we do not want to penalize its coordinates as they will
not be used anyway.

The implementation details of neural networks are usually not available in
the source paper. Therefore, they will vary from one implementation to
another. What we are outlining here is an implementation suggestion, not
an absolute reference. We suggest reading the code from existing
implementations to understand how the loss is calculated.

Bounding box loss
The first part of the loss helps the network learn the weights to predict the bounding box
coordinates and size:

While this equation may seem scary at first, this part is actually relatively simple. Let's
break it down:

λ (lambda) is the weighting of the loss—it reflects how much importance we
want to give to bounding box coordinates during training.
∑ (capital sigma) means that we sum what is right after them. In this case, we
sum for each part of the grid (from i = 0 to i = S2) and for each box in this part of
the grid (from 0 to B).
1obj (indicator function for objects) is a function equal to 1 when the ith part of the
grid and the jth bounding box are responsible for an object. We will explain what
responsible means in the next paragraph.
xi, yi, wi, and hi  correspond to the bounding box size and coordinates. We take the
difference between the predicted value (the output of the network) and the target
value (also called the ground truth). Here, the predicted value has a hat (ˆ).
We square the difference to make sure it is positive.
Notice that we take the square root of wi and hi. We do so to make sure errors for
small bounding boxes are penalized more heavily than errors for big bounding
boxes.
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The key part of this loss is the indicator function. The coordinates will be correct if, and
only if, the box is responsible for detecting an object. For each object in the image, the
difficult part is determining which bounding box is responsible for it. For YOLOv2, the
anchor box with the highest IoU with the detected object is deemed responsible. The
rationale here is to make each anchor box specialize in one type of object.

Object confidence loss
The second part of the loss teaches the network to learn the weights to predict whether a
bounding box contains an object:

We have already covered most of the symbols in this function. The remaining ones are as
follows:

Cij: The confidence that the box, j, in the part, i, of the grid contains an object (of
any kind)
1noobj  (indicator function for no object): A function equal to 1 when the ith part of
the grid and the jth bounding box are not responsible for an object

A naive approach to compute 1noobj  is  (1 - 1obj). However, if we do so, it can cause some
problems during training. Indeed, we have many bounding boxes on our grid. When
determining that one of them is responsible for a specific object, there may have been other
suitable candidates for this object. We do not want to penalize the objectness score of those
other good candidates that also fit the object. Therefore, 1noobj  is defined as follows:

In practice, for each bounding box at position (i, j), the IoU with regard to each of the
ground truth boxes is computed. If the IoU is over a certain threshold (usually 0.6), 1noobj is
set to 0. The rationale behind this idea is to avoid punishing boxes that contain objects but
are not responsible for said object.
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Classification loss
The final part of the loss, the classification loss, ensures that the network learns to predict
the proper class for each bounding box:

This loss is very similar to the one presented in Chapter 1, Computer Vision and Neural
Networks. Note that while the loss presented in the YOLO paper is the L2 loss, many
implementations use cross-entropy. This part of the loss ensures that correct object classes
are predicted.

Full YOLO loss
Full YOLO loss is the sum of the three losses previously detailed. By combining the three
terms, the loss penalizes the error for bounding box coordinate refinement, objectness
scores, and class prediction. By backpropagating the error, we are able to train the YOLO
network to predict correct bounding boxes.

In the book's GitHub repository, readers will find a simplified
implementation of the YOLO network. In particular, the implementation
contains a heavily commented loss function.

Training techniques
Once the loss has been properly defined, YOLO can be trained using backpropagation.
However, to make sure the loss does not diverge and to obtain good performance, we will
detail a few training techniques:

Augmentation (explained in Chapter 7, Training on Complex and Scarce Datasets)
and dropout (explained in Chapter 3, Modern Neural Networks) are used. Without
these two techniques, the network would overfit on the training data and would
not be able to generalize much.
Another technique is multi-scale training. Every n batches, the network's input is
changed to a different size. This forces the network to learn to predict with
accuracy across a variety of input dimensions.
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Like most detection networks, YOLO is pretrained on an image classification
task.
While not mentioned in the paper, the official YOLO implementation uses burn-
in—the learning rate is reduced at the beginning of training to avoid a loss
explosion.

Faster R-CNN – a powerful object detection
model
The main benefit of YOLO is its speed. While it can achieve very good results, it is now
outperformed by more complex networks. Faster Region with Convolutional Neural
Networks (Faster R-CNN) is considered state of the art at the time of writing. It is also
quite fast, reaching 4-5 FPS on a modern GPU. In this section, we will explore its
architecture.

The Faster R-CNN architecture was engineered over several years of research. More
precisely, it was built incrementally from two architectures—R-CNN and Fast R-CNN. In
this section, we will focus on the latest architecture, Faster R-CNN:

Faster R-CNN: towards real-time object detection with region proposal networks (2015),
Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun

This paper draws a lot of knowledge from the two previous designs. Therefore, some of the
architecture details can be found in the following papers:

Rich feature hierarchies for accurate object detection and semantic segmentation (2013),
Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Mali
Fast R-CNN (2015), Ross Girshick

Just as with YOLO architecture, we recommend reading this chapter first
and then having a look at the papers to get a deeper understanding. In
this chapter, we will use the same notations as in the papers.
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Faster R-CNN's general architecture
YOLO is considered a single-shot detector—as its name implies, each pixel of the image is
analyzed once. This is the reason for its very high speed. To obtain more accurate results,
Faster R-CNN works in two stages:

The first stage is to extract a region of interest (RoI, or RoIs in the plural form).1.
An RoI is an area of the input image that may contain an object. For each image,
the first step generates about 2,000 RoIs.
The second stage is the classification step (sometimes referred to as2.
the detection step). We resize each of the 2,000 RoIs to a square to fit the input of
a convolutional network. We then use the CNN to classify the RoI.

In R-CNN and Fast R-CNN, regions of interest are generated using a
technique called selective search. This will not be covered here because it
was removed from the Faster R-CNN paper on account of its slowness.
Moreover, selective search does not involve any deep learning techniques.

As the two parts of Faster R-CNN are independent, we will cover each one separately. We
will then cover the training details of the full model.

Stage 1 – Region proposals
Regions of interest are generated using the region proposal network (RPN). To generate
RoIs, the RPN uses convolutional layers. Therefore, it can be implemented on the GPU and
is very fast.

The RPN architecture shares quite a lot of features with YOLO's architecture:

It also uses anchor boxes—in the Faster R-CNN paper, nine anchor sizes are used
(three vertical rectangles, three horizontal rectangles, and three squares).
It can use any backbone to generate the feature volume.
It uses a grid, and the size of the grid depends on the size of the feature volume.
Its last layer outputs numbers that allow the anchor box to be refined into a
proper bounding box fitting the object.
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However, the architecture is not completely identical to YOLO's. The RPN accepts an image
as input and outputs regions of interest. Each region of interest consists of a bounding box
and an objectness probability. To generate those numbers, a CNN is used to extract a
feature volume. The feature volume is then used to generate the regions, coordinates, and
probabilities. The RPN architecture is illustrated in the following diagram:

Figure 5.11: RPN architecture summary

The step-by-step process represented in Figure 5.11 is as follows:

The network accepts an image as input and applies several convolutional layers.1.
It outputs a feature volume. A convolutional filter is applied over the feature2.
volume. Its size is 3 × 3 × D, where D is the depth of the feature volume (D = 512
in our example).
At each position in the feature volume, the filter generates an intermediate 1 × D3.
vector.
Two sibling 1 × 1 convolutional layers compute the objectness scores and the4.
bounding box coordinates. There are two objectness scores for each of the k
bounding boxes. There are also four floats that will be used to refine the
coordinates of the anchor boxes.

After post-processing, the final output is a list of RoIs. At this step, no information about
the class of the object is generated, only about its location. During the next step,
classification, we will classify the objects and refine the bounding boxes.
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Stage 2 – Classification
The second part of Faster R-CNN is classification. It outputs the final bounding boxes and 
accepts two inputs—the list of RoIs from the previous step (RPN), and a feature volume
computed from the input image.

Since most of the classification stage architecture comes from the previous
paper, Fast R-CNN, it is sometimes referred to with the same name.
Therefore, Faster R-CNN can be regarded as a combination of RPN and
Fast R-CNN.

The classification part can work with any feature volume corresponding to the input image.
However, as feature maps have already been computed in the previous region-proposal
step, they are simply reused here. This technique has two benefits:

Sharing the weights: If we were to use a different CNN, we would have to store
the weights for two backbones—one for the RPN, and one for the classification.
Sharing the computation: For one input image, we only compute one feature
volume instead of two. As this operation is the most expensive of the whole
network, not having to run it twice allows for a consequent gain in
computational performance.

Faster R-CNN architecture
The second stage of Faster R-CNN accepts the feature maps from the first stage, as well as
the list of RoIs. For each RoI, convolutional layers are applied to obtain class predictions
and bounding box refinement information. The operations are represented here:

Figure 5.12: Architecture summary of Faster R-CNN
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Step by step, the process is as follows:

Accept the feature maps and the RoIs from the RPN step. The RoIs generated in1.
the original image coordinate system are converted into the feature map
coordinate system. In our example, the stride of the CNN is 16. Therefore, their
coordinates are divided by 16.
Resize each RoI to make it fit the input of the fully connected layers.2.
Apply the fully connected layer. It is very similar to the final layers of any3.
convolutional network. We obtain a feature vector.
Apply two different convolutional layers. One handles the classification (called4.
cls) and the other handles the refinement of the RoI (called rgs).

The final results are the class scores and bounding box refinement floats that we will be
able to post-process to generate the final output of the model.

The size of the feature volume depends on the size of the input and the
architecture of the CNN. For instance, for VGG-16, the size of the feature
volume is w × h × 512, where w = input_width/16 and h = input_height/16.
We say that VGG-16 has a stride of 16 because one pixel in the feature
map equals 16 pixels in the input image.

While convolutional networks can accept inputs of any size (as they use a sliding window
over the image), the final fully connected layer (between steps 2 and 3) accepts a feature
volume of a fixed size as an input. And since region proposals are of different sizes (a
vertical rectangle for a person, a square for an apple...), this makes the final layer impossible
to use as is.

To circumvent that, a technique was introduced in Fast R-CNN—region of interest pooling
(RoI pooling). This converts a variable-size area of the feature map into a fixed-size area.
The resized feature area can then be passed to the final classification layers.

RoI pooling
The goal of the RoI pooling layer is simple—to take a part of the activation map of variable
size and convert it into a fixed size. The input activation map sub-window is of size h × w.
The target activation map is of size H × W. RoI pooling works by dividing its input into a
grid where each cell is of size h/H × w/W.
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Let's use an example. If the input is of size h × w = 5 × 4, and the target activation map is of
size H × W = 2 × 2, then each cell should be of size 2.5 × 2. Because we can only use integers,
we will make some cells of size 3 × 2 and others of size 2 × 2. Then, we will take the
maximum of each cell:

Figure 5.13: Example of RoI pooling with an RoI of size 5 × 4 (from B3 to E7) and an output of size 2 × 2 (from J4 to K5)

An RoI pooling layer is very similar to a max-pooling layer. The difference
is that RoI pooling works with inputs of variable size, while max-pooling
works with a fixed size only. RoI pooling is sometimes referred to as RoI
max-pooling.

In the original R-CNN paper, RoI pooling had not yet been introduced. Therefore, each RoI
was extracted from the original image, resized, and directly passed to the convolutional
network. Since there were around 2,000 RoIs, it was extremely slow. The Fast in Fast R-
CNN comes from the huge speedup introduced by the RoI pooling layer.
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Training Faster R-CNN
Before we explain how to train the network, let's have a look at the full architecture of
Faster R-CNN:

Figure 5.14: Full architecture of Faster R-CNN. Note that it can work with any input size

Because of its unique architecture, Faster R-CNN cannot be trained like a regular CNN. If
each of the two parts of the network were trained separately, the feature extractors of each
part would not share the same weights. In the next section, we will explain the training of
each section and how to make the two sections share the convolutional weights.

Training the RPN
The input of the RPN is an image, and the output is a list of RoIs. As we saw previously,
there are H × W × k proposals for each image (where H and W represent the size of a feature
map and k is the number of anchors). At this step, the class of the object is not yet
considered.

It would be difficult to train all the proposals at once—since images are mostly made of
background, most of the proposals would be trained to predict background. As a
consequence, the network would learn to always predict background. Instead, a sampling
technique is favored.

Mini-batches of 256 ground truth anchors are built; 128 of them are positive (they contain
an object), and the other 128 are negative (they only contain background). If there are fewer
than 128 positive samples in the image, all the positive samples available are used and the
batch is filled with negative samples.
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The RPN loss
The RPN loss is simpler than YOLO's. It is composed of two terms:

The terms in the preceding equation can be explained as follows:

i is the index of an anchor in a training batch.
pi is the probability of the anchor being an object. pi* is the ground truth—it's 1 if
the anchor is "positive"; otherwise, it's 0.
ti is the vector representing coordinate refinement; ti* is the ground truth.
Ncls is the number of ground truth anchors in the training mini-batch.
Nreg is the number of possible anchor locations.
Lcls is the log loss over two classes (object and background).
λ is a balancing parameter to balance the two parts of the loss.

Finally, the loss is composed of Lreg(ti, ti*) = R(ti - ti*), where R is the smooth L1 loss function,
defined as follows:

The smoothL1 function was introduced as a replacement for the L2 loss used previously.
When the error was too important, the L2 loss would become too large, causing training
instability.

Just as with YOLO, the regression loss is used only for anchor boxes that contain an object
thanks to the pi* term. The two parts are divided by Ncls and Nreg. Those two values are
called normalization terms—if we were to change the size of mini-batches, the loss would
not lose its equilibrium.

Finally, lambda is a balancing parameter. In the paper configuration, Ncls ~= 256 and Nreg ~=
2,400. The authors set λ to 10 so that the two terms have the same total weight.

In summary, similar to YOLO, the loss penalizes the following:

The error in objectness classification with the first term
The error in bounding box refinement with the second term
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However, contrary to YOLO's loss, it does not deal with object classes bceause the RPN
only predicts RoIs. Apart from the loss and the way mini-batches are constructed, the RPN
is trained like any other network using backpropagation.

Fast R-CNN loss
As stated earlier, the second stage of Faster R-CNN is also referred to as Fast R-CNN.
Therefore, its loss is often referenced as the Fast R-CNN loss. While the formulation of the
Fast R-CNN loss is different to the RPN loss, it is very similar in essence:

The terms in the preceding equation can be explained as follows:

Lcls(p,u) is the log loss between the ground truth class, u, and the class
probabilities, p.
Lloc(t

u, v) is the same loss as Lreg in the RPN loss.
λ[u ≥ 1] is equal to 1 when u ≥ 1 and 0 otherwise.

During Fast R-CNN training, we always use a background class with id = 0. Indeed, the
RoIs may contain background regions, and it is important to classify them as such. The
term λ[u ≥ 1] avoids penalizing the bounding box error for background boxes. For all the
other classes, since u will be above 0, we will penalize the error.

Training regimen
As described earlier, sharing the weights between the two parts of the network allows the
model to be faster (as the CNN is only applied once) and lighter. In the Faster R-CNN
paper, the recommended training procedure is called 4-step alternating training. A
simplified version of this procedure goes like this:

Train the RPN so that it predicts acceptable RoIs.1.
Train the classification part using the output of the trained RPN. At the end of2.
the training, the RPN and the classification part have different convolutional
weights since they have been trained separately.
Replace the RPN's CNN with the classification's CNN so that they now share3.
convolutional weights. Freeze the shared CNN weights. Train the RPN's last
layers again.
Train the classification's last layer using the output of the RPN again.4.
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At the end of this process, we obtain a trained network with the two parts sharing the
convolutional weights.

TensorFlow Object Detection API
As Faster R-CNN is always improving, we do not provide a reference implementation with
this book. Instead, we recommend using the TensorFlow Object Detection API. It offers an
implementation of Faster R-CNN that's maintained by contributors and by the TensorFlow
team. It offers pretrained models and code to train your own model.

The Object Detection API is not part of the core TensorFlow library, but is available in a
separate repository, which was introduced in Chapter 4, Influential Classification
Tools: https://github. com/ tensorflow/ models/ tree/ master/ research/ object_
detection.

Using a pretrained model
The object detection API comes with several pretrained models trained on the COCO
dataset. The models vary in architecture—while they are all based on Faster R-CNN, they
use different parameters and backbones. This has an impact on inference speed and
performance. A rule of thumb is that the inference time grows with the mean average
precision.

Training on a custom dataset
It is also possible to train a model to detect objects that are not in the COCO dataset. To do
so, a large amount of data is needed. In general, it is recommended to have at least 1,000
samples per object class. To generate a training set, training images need to be manually
annotated by drawing the bounding boxes around them.

Using the Object Detection API does not involve writing Python code. Instead, the
architecture is defined using configuration files. We recommend starting from an existing
configuration and working from there to obtain good performance. A walk-through is
available in this chapter's repository.
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Summary
We covered the architecture of two object detection models. The first one, YOLO, is known
for its inference speed. We went through the general architecture and how inference works,
as well as the training procedure. We also detailed the loss used to train the model. The
second one, Faster R-CNN, is known for its state-of-the-art performance. We analyzed the
two stages of the network and how to train them. We also described how to use Faster R-
CNN through the TensorFlow Object Detection API.

In the next chapter, we will extend object detection further by learning how to segment
images into meaningful parts, as well as how to transform and enhance them.

Questions
What is the difference between a bounding box, an anchor box, and a ground1.
truth box?
What is the role of the feature extractor?2.
What model should be favored, YOLO or Faster R-CNN?3.
What does the use of anchor boxes entail?4.

Further reading
Mastering OpenCV 4 (https:/ /www. packtpub. com/application- development/
mastering- opencv- 4- third- edition), by Roy Shilkrot and David Millán Escrivá,
contains practical computer vision projects, including advanced object detection
techniques.

OpenCV 4 Computer Vision Application Programming Cookbook (https:/ /www.
packtpub. com/ application- development/ opencv- 4-computer- vision-
application- programming- cookbook- fourth- edition), by David Millán Escrivá
and Robert Laganiere, covers classical object descriptors as well as object
detection concepts.
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6
Enhancing and Segmenting

Images
We have just learned how to create neural networks that output predictions that are more
complex than just a single class. In this chapter, we will push this concept further and
introduce encoders-decoders, which are models used to edit or generate full images. We
will present how encoder-decoder networks can be applied to a wide range of applications,
from image denoising to object and instance segmentation. This chapter comes with several
concrete examples, such as the application of encoders-decoders to semantic segmentation
for self-driving cars.

The following topics will be covered in this chapter:

What encoders-decoders are, and how they are trained for pixel-level prediction
Which novel layers they use to output high-dimensional data (unpooling,
transposed, and atrous convolutions)
How the FCN and U-Net architectures are tackling semantic segmentation
How the models we have covered so far can be extended to deal with instance
segmentation

Technical requirements
Jupyter notebooks illustrating the concepts presented in this chapter can be found in the
following Git folder: github.com/PacktPublishing/Hands-On-Computer-Vision-with-
TensorFlow-2/tree/master/Chapter06.

https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-2/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-Tensorflow/tree/master/ch3
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Later in this chapter, we introduce the pydensecrf library to improve segmentation
results. As detailed on its GitHub page (refer to the documentation at https:/ /github.
com/lucasb-eyer/ pydensecrf#installation), this Python module can be installed
through pip (pip install
git+https://github.com/lucasb-eyer/pydensecrf.git) and requires a recent
version of Cython (pip install -U cython).

Transforming images with encoders-
decoders
As presented in Chapter 1, Computer Vision and Neural Networks, multiple typical tasks in
computer vision require pixel-level results. For example, semantic segmentation methods
classify each pixel of an image, and smart editing tools return images with some pixels
altered (for example, to remove unwanted elements). In this section, we will present
encoders-decoders, and how convolutional neural networks (CNNs) following this 
paradigm can be applied to such applications.

Introduction to encoders-decoders
Before tackling complex applications, let's first introduce what encoders-decoders are and
what purpose they fulfill.

Encoding and decoding
The encoder-decoder architecture is a very generic framework, with applications in
communications, cryptography, electronics, and beyond. According to this framework, the
encoder is a function that maps input samples into a latent space, that is, a hidden
structured set of values defined by the encoder. The decoder is the complementary function
that maps elements from this latent space into a predefined target domain. For example, an
encoder can be built to parse media files (with their content represented as elements in its
latent space), and it can be paired with a decoder defined, for instance, to output the media
contents in a different file format. Well-known examples are the image and audio
compression formats we commonly use nowadays. JPEG tools encode our media,
compressing them into lighter binary files; they then decode them to recover the pixel
values at display time.
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In machine learning, encoder-decoder networks have been used for a long time now (for
instance, for text translation). An encoder network would take sentences from the source
language as input (for instance, French sentences) and learn to project them into a latent
space where the meaning of the sentence would be encoded as a feature vector. A decoder
network would be trained alongside the encoder to convert the encoded vectors into
sentences in the target language (for instance, English).

Vectors from the latent space in encoder-decoder models are commonly
called codes.

Note that a common property of encoders-decoders is for their latent space to be smaller
than the input and target latent spaces, as shown in Figure 6-1:

Figure 6-1: Example of an auto-encoder trained on the MNIST dataset (copyright owned by Yann LeCun and Corinna Cortes)

In Figure 6-1, the encoder is trained to convert the 28 × 28 images into vectors (codes) of 32
values here, and the decoder is trained to recover the images. These codes can be plotted
with their class labels to highlight similarities/structures in the dataset (the 32-dimensional
vectors are projected on a 2D plane using t-SNE, a method developed by Laurens van der
Maatens and Geoffrey Hinton and detailed in the notebooks).

Encoders are designed or trained to extract/compress the semantic information contained in
the samples (for example, the meaning of a French sentence, without the grammatical
particularities of this language). Then, decoders apply their knowledge of the target domain
to decompress/complete the information accordingly (for instance, converting the encoded
information into a proper English sentence).
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Auto-encoding
Auto-encoders (AEs) are a special type of encoders-decoders. As shown in Figure 6-1, their
input and target domains are the same, so their goal is to properly encode and then decode 
images without impacting their quality, despite their bottleneck (their latent space of lower
dimensionality). The inputs are reduced to a compressed representation (as feature
vectors). If an original input is requested later on, it can be reconstructed from its
compressed representation by the decoder.

JPEG tools can thus be called AEs, as their goal is to encode images and then decode them
back without losing too much of their quality. The distance between the input and output
data is the typical loss to minimize for auto-encoding algorithms. For images, this distance
can simply be computed as the cross-entropy loss, or as the L1/L2 loss (Manhattan and
Euclidean distances, respectively) between the input images and resulting images (as
illustrated in Chapter 3, Modern Neural Networks).

In machine learning, auto-encoding networks are really convenient to train, not only 
because their loss is straightforward to express, as we just described, but also because their
training does not require any labels. The input images are the targets used to compute the
loss.

There is a schism among machine learning experts regarding AEs. Some
claim that these models are unsupervised since they do not require any
additional labels for their training. Others affirm that, unlike purely
unsupervised methods (which typically use complex loss functions to
discover patterns in unlabeled datasets), AEs have clearly defined targets
(that is, their input images). Therefore, it is also common for these models
to be called self-supervised (that is, their targets can be directly derived
from their inputs).

Given the smaller latent space of AEs, their encoding sub-network must learn to properly
compress the data, whereas the decoder must learn a proper mapping to decompress it
back.

Without the bottleneck condition, this identity mapping would be
straightforward for networks with shortcut paths, such as ResNet (refer
to Chapter 4, Influential Classification Tools). They could simply forward
the complete input information from encoder to decoder. With a lower-
dimensional latent space (bottleneck), they are forced to learn a properly
compressed representation.
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Purpose
Regarding the more generic encoders-decoders, their applications are numerous. They are
used to convert images, to map them from one domain or modality to another. For
example, such models are often applied to depth regression, that is, the estimation of the
distance between the camera and the image content (the depth) for each pixel. This is an
important operation for augmented-reality applications, for example, since it allows them
to build a 3D representation of the surroundings, and thus to better interact with the
environment.

Similarly, encoders-decoders are commonly used for semantic segmentation (refer to
Chapter 1, Computer Vision and Neural Networks, for its definition). In this case, the
networks are trained not to return the depth, but the estimated class for each pixel (refer to
Figure 6-2-c). This important application will be detailed in the second part of this chapter.
Finally, encoders-decoders are also famous for their more artistic use cases, such
as transforming doodle art into pseudo-realistic images or estimating the daytime
equivalent of pictures taken at night:

Figure 6-2: Examples of applications for encoders-decoders. These three applications are covered in the Jupyter notebooks for this chapter, with additional explanations and
implementation details

The urban scene images and their labels for semantic segmentation in
Figure 6-2, Figure 6-10, and Figure 6-11 come from the Cityscapes dataset
(https:/ /www. cityscapes- dataset. com). Cityscapes is an awesome
dataset and a benchmark for recognition algorithms applied to
autonomous driving. Marius Cordts et al., the researchers behind this
dataset, kindly gave us the authorization to use some of their images to
illustrate this book and to demonstrate some algorithms presented later in
this chapter (refer to Jupyter notebooks).

Let's now consider AEs. Why should a network be trained to return its input images? The
answer lies once again in the bottleneck property of AEs. While the encoding and decoding
components are trained as a whole, they are applied separately depending on the use cases.

https://www.cityscapes-dataset.com
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Because of the bottleneck, the encoder has to compress the data while preserving as much
information as possible. Therefore, in case the training dataset has recurring patterns, the
network will try to uncover these correlations to improve the encoding. The encoder part of
an AE can thus be used to obtain low-dimensional representations of images from the
domain it was trained for. The low-dimensional representations they provide are often
good at preserving the content similarity between images, for instance. Therefore, they are
sometimes used for dataset visualization, to highlight clusters and patterns (refer to Figure
6-1).

AEs are not as good as algorithms, such as JPEG for generic image
compression. Indeed, AEs are data-specific; that is, they can only efficiently
compress images from the domain they know (for example, an AE trained
on images of natural landscapes would work poorly on portraits since the
visual features would be too different). However, unlike traditional
compression methods, AEs have a better understanding of the images
they were trained for, their recurring features, semantic information, and
more).

In some cases, AEs are trained for their decoders, which can be used for generative tasks.
Indeed, if the latent space has been appropriately structured during training, then any
vector randomly picked from this space can be turned into a picture by the decoder! As we
will briefly explain later in this chapter and in Chapter 7, Training on Complex and Scarce
Datasets, training a decoder for the generation of new images is actually not that easy, and
requires some careful engineering for the resulting images to be realistic (this is especially
true for the training of generative adversarial networks (GANs), as explained in the next
chapter).

However, denoising AEs are the most common AE instances found in practice. These
models have the particularity that their input images undergo a lossy transformation before
being passed to the networks. Since these models are still trained to return the original
images (before transformation), they will learn to cancel the lossy operation and recover
some of the missing information (refer to Figure 6-2-a). Typical models are trained to cancel
white or Gaussian noise, or to recover missing content (such as occluded/removed image
patches). Such AEs are also used for smart image upscaling, also called image super-
resolution. Indeed, these networks can learn to partially remove the artifacts (that is, noise)
caused by traditional upscaling algorithms such as bilinear interpolation (refer to Figure
6-2-b).
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Basic example – image denoising
We will illustrate the usefulness of AEs on a simple example—the denoising of corrupted
MNIST images.

Simplistic fully connected AE
To demonstrate how simple, yet efficient, these models can be, we will opt for a shallow,
fully connected architecture, which we will implement with Keras:

inputs = Input(shape=[img_height * img_width])
# Encoding layers:
enc_1  = Dense(128, activation='relu')(inputs)
code   = Dense(64,  activation='relu')(enc_1)
# Decoding layers:
dec_1  = Dense(64,  activation='relu')(code)
preds  = Dense(128, activation='sigmoid')(dec_1)
autoencoder = Model(inputs, preds)
# Training:
autoencoder.compile(loss='binary_crossentropy')
autoencoder.fit(x_train, x_train) # x_train as inputs and targets

We have highlighted here the usual symmetrical architecture of encoders-decoders, with
their lower-dimensional bottleneck. To train our AE, we use the images (x_train) both as
inputs and as targets. Once trained, this simple model can be used to embed datasets, as
shown in Figure 6-1.

We opted for sigmoid as the last activation function, in order to get output
values between 0 and 1, like the input values.

Application to image denoising
Training our previous model for image denoising is as simple as creating a noisy copy of
the training images and passing it as input to our network instead:

x_noisy = x_train + np.random.normal(loc=.0, scale=.5, size=x_train.shape)
autoencoder.fit(x_noisy, x_train)
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The first two notebooks dedicated to this chapter detail the training
process, providing illustrations and additional tips (for instance, to
visualize the images predicted during training).

Convolutional encoders-decoders
Like other neural network (NN)-based systems, encoders-decoders benefited a lot from the
introduction of convolutional and pooling layers. Deep auto-encoders (DAEs) and other
architectures soon became widely used for increasingly complex tasks.

In this section, we will first introduce new layers developed for convolutional encoders-
decoders. We will then present some significant architectures based on these operations.

Unpooling, transposing, and dilating
As we saw in previous chapters, such as Chapter 3, Modern Neural Networks, and Chapter
4, Influential Classification Tools, CNNs are great feature extractors. Their convolutional layers
convert their input tensors into more and more high-level feature maps, while their pooling
layers gradually down-sample the data, leading to compact and semantically rich features.
Therefore, CNNs make for performant encoders.

However, how could this process be reversed to decode these low-dimensional features
into full images? As we will present in the following paragraphs, the same way
convolutions and pooling operations replaced dense layers for the encoding of images,
reverse operations—such as transposed convolution (also known as deconvolutions),
dilated convolutions, and unpooling—were developed to better decode features.

Transposed convolution (deconvolution)
Back in Chapter 3, Modern Neural Networks, we introduced convolutional layers, the
operations they perform, and how their hyperparameters (kernel size k, input depth D,
number of kernels N, padding p, and stride s) affect the dimensions of their output (Figure
6-3 serves as a reminder). For an input tensor of shape (H, W, D), we presented the
following equations to evaluate the output shape (Ho, Wo, N):
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Now, let's assume that we want to develop a layer to reverse the spatial transformation of
convolutions. In other words, given a feature map of shape (Ho, Wo, N) and the same
hyperparameters, k, D, N, p, and s, we would like a convolution-like operation to recover a
tensor of shape (H, W, D). Isolating H and W in the previous equations, we thus want an
operation upholding the following properties:

This is how transposed convolutions were defined. As we briefly mentioned in Chapter 4,
Influential Classification Tools, this new type of layer was proposed by Zeiler and Fergus, the
researchers behind ZFNet, the winning methods at ILSVRC 2013 (Visualizing and
understanding convolutional networks, Springer, 2014).

With a k × k × D × N stack of kernels, these layers convolve an Ho × Wo × N tensor into an H
× W × D map. To achieve this, the input tensor first undergoes dilation. The dilation
operation, defined by a rate, d, consists of inserting d – 1 zeroed rows and columns between
each couple of rows and columns (respectively) of the input tensor, as shown in Figure 6-4.
In a transposed convolution, the dilation rate is set to s (the stride used for the standard
convolution it is reversing). After this resampling, the tensor is then padded by p' = k – p – 1.
Both the dilation and padding parameters are defined in this way in order to recover the
original shape, (H, W, D). The tensor is then finally convolved with the layer's filters using a
stride of s' = 1, finally resulting in an H × W × D map. Normal and transposed convolutions
are compared in Figures 6-3 and 6-4.

The following is a normal convolution:

Figure 6-3: Reminder of the operations performed by a convolutional layer (defined here by a 3 × 3 kernel w, padding p = 1, and stride s = 2)
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Note that in Figure 6-3, the mathematical operation between the patches
and the kernel is actually a cross-correlation (refer to Chapter 3, Modern
Neural Networks).

The following is a transposed convolution:

Figure 6-4: Operations performed by a transposed convolution layer to reverse the spatial transformation of a standard convolution (defined here by a 3 × 3 kernel w, padding p =
1, and dilation d = 2, as in Figure 6-3)

Note that this time, in Figure 6-4, the operation between the patches and
the kernel is mathematical convolution.

If this process seems a bit abstract, it is enough to remember that transposed convolutional
layers are commonly used to mirror standard convolutions in order to increase the spatial
dimensionality of feature maps while convolving their content with trainable filters. This
makes these layers quite suitable for decoder architectures. They can be instantiated using
tf.layers.conv2d_transpose() (refer to the documentation at https:/ /www.
tensorflow.org/api_ docs/ python/ tf/ layers/ conv2d_ transpose) and
tf.keras.layers.Conv2DTranspose() (refer to the documentation at https:/ /www.
tensorflow.org/api_ docs/ python/ tf/ keras/ layers/ Conv2DTranspose), which have the
same signatures as the standard conv2d ones.
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There is another subtle difference between standard convolutions and
transposed ones, which does not have any real impact in practice, but
which is still good to know. Going back to Chapter 3, Modern Neural
Networks, we mentioned that convolutional layers in CNNs actually
perform cross-correlation. As shown in Figure 6-4, transposed
convolutional layers actually use mathematical convolution, flipping the
indices of the kernels.

Transposed convolutions are also popularly, yet wrongly, called
deconvolutions. While there is a mathematical operation named
deconvolution, it performs differently than transposed convolution.
Deconvolutions actually fully revert convolutions, returning the original
tensors. Transposed convolutions only approximate this process and
return tensors with the original shapes. As we can see in Figures 6-3 and
6-4, the shapes of the original and final tensors match, but not their values.

Transposed convolutions are also sometimes called fractionally strided
convolutions. Indeed, the dilation of the input tensors can somehow be
seen as the equivalent of using a fractional stride for the convolution.

Unpooling
Although strided convolutions are often used in CNN architectures, average-pooling and
max-pooling are the most common operations when it comes to reducing the spatial
dimensions of images. Therefore, Zeiler and Fergus also proposed a max-unpooling
operation (often simply referred to as unpooling) to pseudo-reverse max-pooling. They
used this operation within a network they called a deconvnet, to decode and visualize the
features of their convnet (that is, a CNN). In the paper describing their solution after
winning ILSVRC 2013 (in Visualizing and understanding convolutional networks, Springer,
2014), they explain that, even though max-pooling is not invertible (that is, we cannot
mathematically recover all the non-maximum values the operation discards), it is possible
to define an operation approximating its inversion, at least in terms of spatial sampling.
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To implement this pseudo-inverse operation, they first modified each max-pooling layer so
that it outputs the pooling mask along with the resulting tensor. In other words, this mask
indicates the original positions of the selected maxima. The max-unpooling operation takes
for inputs the pooled tensor (which may have undergone other shape-preserving
operations in-between the operation) and the pooling mask. It uses the latter to scatter the
input values into a tensor upscaled to its pre-pooling shape. A picture is worth a thousand
words, so Figure 6-5 may help you to understand the operation:

Figure 6-5: Example of a max-unpooling operation, following a max-pooling layer edited to also output its pooling mask

Note that, like pooling layers, unpooling operations are fixed/untrainable operations.

Upsampling and resizing
Similarly, an average-unpooling operation was developed to mirror average-pooling. The
latter operation takes a pooling region of k × k elements and averages them into a single
value. Therefore, an average-unpooling layer takes each value of a tensor and duplicates it
into a k × k region, as illustrated in Figure 6-6:

Figure 6-6: Example of an average-unpooling operation (also known as upsampling)
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This operation is nowadays used more often than max-unpooling, and is more commonly
known as upsampling. For instance, this operation can be instantiated through
tf.keras.layers.UpSampling2D() (refer to the documentation at https:/ /www.
tensorflow.org/api_ docs/ python/ tf/ keras/ layers/ UpSampling2D). This method is itself
nothing more than a wrapper for tf.image.resize() (refer to the documentation at
https://www.tensorflow. org/ api_ docs/ python/ tf/image/ resize) when called with
the method=tf.image.ResizeMethod.NEAREST_NEIGHBOR argument, used to resize
images using nearest-neighbor interpolation (as its name implies). Finally, note that bilinear
interpolation is also sometimes used to upscale feature maps without adding any 
parameters to train, for example, by instantiating tf.keras.layers.UpSampling2D()
with the interpolation="bilinear" argument (instead of the default
"nearest" value), which is equivalent to calling tf.image.resize() with the default
method=tf.image.ResizeMethod.BILINEAR attribute.

In decoder architecture, each nearest-neighbor or bilinear upscaling is commonly followed
by a convolution with stride s = 1 and padding "SAME" (to preserve the new shape). These
combinations of predefined upscaling and convolutional operations mirror the
convolutional and pooling layers composing encoders, and allow the decoder to learn its
own features to better recover the target signals.

Some researchers, such as Augustus Odena, favor these operations over
transposed convolutions, especially for tasks such as image super-
resolution. Indeed, transposed convolutions tend to cause some
checkerboard artifacts (due to feature overlapping when the kernel size is
not a multiple of the stride), impacting the output quality (Deconvolution
and Checkerboard artifacts, Distill, 2016).

Dilated/atrous convolution
The last operation we will introduce in this chapter is a bit different from the previous ones,
as it is not meant to upsample a feature map provided. Instead, it was proposed to
artificially increase the receptive field of convolutions without further sacrificing the spatial
dimensionality of the data. To achieve this, dilation is applied here too (refer to
the Transposed convolutions (deconvolution) section), though quite differently.
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Indeed, dilated convolutions are similar to standard convolutions, with an additional
hyperparameter, d, defining the dilation applied to their kernels. Figure 6-7 illustrates how
this process does artificially increase the layer's receptive field:

Figure 6-7: Operations performed by a dilated-convolutional layer (defined here by a 2 × 2 kernel w, padding p = 1, stride s = 1, and dilation d = 2)

These layers are also called atrous convolutions, from the French
expression à trous (with holes). Indeed, while the kernel dilation increases
the receptive field, it does so by carving holes in it.

With such properties, this operation is frequently used in modern encoders-decoders, to
map images from one domain to another. In TensorFlow and Keras, instantiating dilated 
convolutions is just a matter of providing a value above the default 1 for the
dilation_rate parameter of tf.layers.conv2d() and tf.keras.layers.Conv2D().

These various operations developed to preserve or increase the spatiality of feature maps
led to multiple CNN architectures for pixel-wise dense prediction and data generation.
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Example architectures – FCN and U-Net
Most convolutional encoders-decoders follow the same template as their fully connected
counterparts, but leverage the spatial properties of their locally connected layers for higher-
quality results. A typical convolutional AE is presented in one of the Jupyter notebooks. In
this subsection, we will cover two more advanced architectures derived from this basic
template. Both released in 2015, the FCN and U-Net models are still popular, and are
commonly used as components for more complex systems (in semantic segmentation,
domain adaptation, and others).

Fully convolutional networks
As briefly presented in Chapter 4, Influential Classification Tools, fully convolutional
networks (FCNs) are based on the VGG-16 architecture, with the final dense layers
replaced by 1 × 1 convolutions. What we did not mention was that these networks are 
commonly extended with upsampling blocks and used as encoders-decoders. Proposed by
Jonathan Long, Evan Shelhamer, and Trevor Darrell from the University of California,
Berkeley, the FCN architecture perfectly illustrates the notions developed in the previous
subsection:

How CNNs for feature extraction can be used as efficient encoders
How their feature maps can then be effectively upsampled and decoded by the
operations we just introduced

Indeed, Jonathan Long et al. suggested reusing a pretrained VGG-16 as a feature extractor
(refer to Chapter 4, Influential Classification Tools). With its five convolutional blocks,
VGG-16 efficiently transforms images into feature maps, albeit dividing their spatial
dimensions by two after each block. To decode the feature maps from the last block (for
instance, into semantic masks), the fully connected layers used for classification are
replaced by convolutional ones. The final layer is then applied – a transposed convolution
to upsample the data back to the input shape (that is, with a stride of s = 32, since the spatial
dimensions are divided by 32 through VGG).

However, Long et al. quickly noticed that this architecture, named FCN-32s, was yielding
overly coarse results. As explained in their paper (Fully convolutional networks for semantic
segmentation, Proceedings of the IEEE CVPR conference, 2015), the large stride at the final layer
indeed limits the scale of detail. Though the features from the last VGG block contain rich
contextual information, too much of their spatial definition is already lost. Therefore, the
authors had the idea to fuse the feature maps from the last block with those larger
ones from previous blocks.
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In FCN-16s, the last layer of FCN-32s is thus replaced by a transposed layer with a stride of
s = 2 only, so the resulting tensor has the same dimensions as the feature map from the
fourth block. Using a skip connection, features from both tensors are merged together
(element-wise addition). The result is finally scaled back to the input shape with another
transposed convolution with s = 16. In FCN-8s, the same procedure is repeated instead with
features from the third block, before the final transposed convolution with s = 8. For clarity,
the complete architecture is presented in Figure 6-8, and a Keras implementation is
provided in the next example:

Figure 6-8: FCN-8s architecture. The data dimensions are shown after each block, supposing an H × W input. Do represents the desired number of output channels

Figure 6-8 illustrates how VGG-16 serves as a feature extractor/encoder, and how the
transposed convolutions are used for decoding. The figure also highlights that FCN-32s and
FCN-16s are simpler, lighter architectures, with only one skip connection, or none at all.

With its use of transfer learning and its fusion of multi-scale feature maps, FCN-8s can 
output images with fine details. Furthermore, because of its fully convolutional nature, it
can be applied to encode/decode images of different sizes. Performant and versatile,
FCN-8s is still commonly used in many applications, while inspiring multiple other
architectures.
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U-Net
Among the solutions inspired by FCNs, the U-Net architecture is not only one of the first; it
is probably the most popular (proposed by Olaf Ronneberger, Philipp Fischer, and Thomas
Brox in a paper entitled U-Net: Convolutional networks for biomedical image
segmentation, published by Springer).

Also developed for semantic segmentation (applied to medical imaging), it shares multiple
properties with FCNs. It is also composed of a multi-block contractive encoder that
increases the features' depth while reducing their spatial dimensions, and of an expansive
decoder that recovers the image resolution. Moreover, like in FCNs, skip connections are
used to connect encoding blocks to their decoding counterparts. The decoding blocks are
thus provided with both the contextual information from the preceding block and the
location information from the encoding path.

U-Net also differs from FCN in two main ways. Unlike FCN-8s, U-Net is symmetrical,
going back to the traditional U-shaped encoder-decoder structure (hence the name).
Furthermore, the merging with the feature maps from the skip connection is done through
concatenation (along the channel axis) instead of addition. The U-Net architecture is
depicted in Figure 6-9. As for the FCN, a Jupyter Notebook is dedicated to its
implementation from scratch:

Figure 6-9: U-Net architecture

Note also that while the original decoding blocks have transposed convolutions with s = 2
for upsampling, it is common to find implementations using nearest-neighbor scaling
instead (refer to the discussion in the previous subsection). Given its popularity, U-Net has
known many variations and still inspires numerous architectures (for example, replacing its
blocks with residual ones, and densifying the intra-block and extra-block connectivity).
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Intermediary example – image super-resolution
Let's briefly apply one of these models to a new problem – image super-resolution
(complete implementation and additional tips are found in the related notebook).

FCN implementation
Remembering the architecture we just presented, a simplified version of FCN-8s can be
implemented as follows (note that the real model has additional convolutions before each
transposed one):

inputs = Input(shape=(224, 224, 3))
# Building a pretrained VGG-16 feature extractor as encoder:
vgg16 = VGG16(include_top=False, weights='imagenet', input_tensor=inputs)
# We recover the feature maps returned by each of the 3 final blocks:
f3 = vgg16.get_layer('block3_pool').output # shape: (28, 28, 256)
f4 = vgg16.get_layer('block4_pool').output # shape: (14, 14, 512)
f5 = vgg16.get_layer('block5_pool').output # shape: ( 7, 7, 512)
# We replace the VGG dense layers by convs, adding the "decoding" layers
instead after the conv/pooling blocks:
f3 = Conv2D(filters=out_ch, kernel_size=1, padding='same')(f3)
f4 = Conv2D(filters=out_ch, kernel_size=1, padding='same')(f4)
f5 = Conv2D(filters=out_ch, kernel_size=1, padding='same')(f5)
# We upscale `f5` to a 14x14 map so it can be merged with `f4`:
f5x2 = Conv2DTranspose(filters=out_chh, kernel_size=4,strides=2,
                       padding='same', activation='relu')(f5)
# We merge the 2 feature maps with an element-wise addition:
m1 = add([f4, f5x2])
# We repeat the operation to merge `m1` and `f3` into a 28x28 map:
m1x2 = Conv2DTranspose(filters=out_ch, kernel_size=4, strides=2,
                       padding='same', activation='relu')(m1)
m2 = add([f3, m1x2])
# Finally, we use a transp-conv to recover the original shape:
outputs = Conv2DTranspose(filters=out_ch, kernel_size=16, strides=8,
                          padding='same', activation='sigmoid')(m2)
fcn_8s = Model(inputs, outputs)

Reusing the Keras implementation of VGG and the Functional API, an FCN-8s model can
be created with minimal effort.
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Application to upscaling images
A simple trick to train a network for super-resolution is to use a traditional upscaling
method (such as bilinear interpolation) to scale the images to the target dimensions, before
feeding them to the model. This way, the network can be trained as a denoising AE, whose
task is to clear the upsampling artifacts and to recover lost details:

x_noisy = bilinear_upscale(bilinear_downscale(x_train)) # pseudo-code
fcn_8s.fit(x_noisy, x_train)

Proper code and complete demonstration on images can be found in the
notebooks.

As mentioned earlier, the architectures we just covered are commonly applied to a wide
range of tasks, such as depth estimation from color images, next-frame prediction (that is,
predicting what the content of the next image could be, taking for input a series of video
frames), and image segmentation. In the second part of this chapter, we will develop the
latter task, which is essential in many real-life applications.

Understanding semantic segmentation
Semantic segmentation is a more generic term for the task of segmenting images into
meaningful parts. It covers both object segmentation and instance segmentation, which
were introduced in Chapter 1, Computer Vision and Neural Networks. Unlike image
classification and object detection, covered in the previous chapters, segmentation tasks
require the methods to return pixel-level dense predictions, that is, to assign a label to each
pixel in the input images.

After explaining in more detail why encoders-decoders are thus great at object
segmentation, and how their results can be further refined, we will present some solutions
for the more complicated task of instance segmentation.
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Object segmentation with encoders-decoders
As we saw in the first part of this chapter, encoding-decoding networks are trained to map
data samples from one domain to another (for example, from noisy to noiseless, or from
color to depth). Object segmentation can be seen as one such operation – the mapping of
images from the color domain to the class domain. Given its value and context, we want to
assign one of the target classes to each pixel of a picture, returning a label map with the 
same height and width.

Teaching encoders-decoders to take an image and return a label map still requires some
consideration, which we will now discuss.

Overview
In the following paragraphs, we will present how networks such as U-Net are used for
object segmentation, and how their outputs can be further processed into refined label
maps.

Decoding as label maps
Building encoders-decoders to directly output label maps—where each pixel value
represents a class (for instance, 1 for dog, and 2 for cat)—would yield poor results. As with
classifiers, we need a better way to output categorical values.

To classify images among N categories, we learned to build networks with the final layers
outputting N logits, representing the predicted per-class scores. We also learned how to
convert these scores into probabilities using the softmax operation, and how to return the
most probable class(es) by picking the highest values (for instance, using argmax). The
same mechanism can be applied to semantic segmentation, at the pixel level instead of the
image level. Instead of outputting a column vector of N logits containing the per-class
scores for each full image, our network is built to return an H × W × N tensor with scores
for each pixel (refer to Figure 6-10):
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Figure 6-10: Given an input image of dimensions H × W, the network returns an H × W × N probability map, with N being the number of classes. Using argmax, the predicted
label map can then be obtained

For the architectures we presented in this chapter, obtaining such an output tensor is
simply a matter of setting Do = N, that is, setting the number of output channels equal to the
number of classes when building the models (refer to Figures 6-8 and 6-9). They can then be
trained as classifiers. The cross-entropy loss is used to compare the softmax values with the
one-hot-encoded ground truth label maps (the fact that the compared tensors have more
dimensions for classification that do not impact the calculations). Also, the H × W × N
predictions can be similarly transformed into per-pixel labels by selecting the indices of the
highest values along the channel axis (that is, argmax over the channel axis). For instance,
the FCN-8s code presented earlier can be adapted to train a model for object segmentation,
as follows:

inputs = Input(shape=(224, 224, 3))
out_ch = num_classes = 19 # e.g., for object segmentation over Cityscapes
# [...] building e.g. a FCN-8s architecture, c.f. previous snippet.
outputs = Conv2DTranspose(filters=out_ch, kernel_size=16, strides=8,
                          padding='same', activation=None)(m2)
seg_fcn = Model(inputs, outputs)
seg_fcn.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
# [...] training the network. Then we use it to predict label maps:
label_map = np.argmax(seg_fcn.predict(image), axis=-1)

The Git repository contains a complete example of an FCN-8s model built and trained for
semantic segmentation, as well as a U-Net model.
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Training with segmentation losses and metrics
The use of state-of-the-art architectures, such as FCN-8s and U-Net, is key to building 
performant systems for semantic segmentation. However, the most advanced models still
need a proper loss to converge optimally. While cross-entropy is the default loss to train
models both for coarse and dense classification, precautions should be taken for the latter
cases.

For image-level and pixel-level classification tasks, class imbalance is a common problem.
Imagine training models over a dataset of 990 cat pictures and 10 dog pictures. A model
that would learn to always output cat would achieve 99% training accuracy, but would not
be really useful in practice. For image classification, this can be avoided by adding or
removing pictures so that all classes appear in the same proportions. The problem is trickier
for pixel-level classification. Some classes may appear in every image but span only a
handful of pixels, while other classes may cover most of the images (such as traffic
sign versus road classes for our self-driving car application). The dataset cannot be edited to
compensate for such an imbalance.

To prevent the segmentation models from developing a bias toward larger classes, their
loss functions should instead be adapted. For instance, it is common practice to weigh the
contribution of each class to the cross-entropy loss. As presented in our notebook on
semantic segmentation for self-driving cars and in Figure 6-11, the less a class appears in
training images, the more it should weigh on the loss. This way, the network would be
heavily penalized if it starts ignoring smaller classes:

Figure 6-11: Examples of pixel weighing strategies for semantic segmentation (the lighter the pixels, the greater their weight on the loss)

The weight maps are usually computed from the ground truth label maps. It should be
noted that, as shown in Figure 6-11, the weight applied to each pixel can be set not only
according to the class, but also according to the pixel's position relative to other elements,
and more.
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Another solution is to replace the cross-entropy with another cost function that's not
affected by the class proportions. After all, cross-entropy is a surrogate accuracy function,
adopted because it is nicely differentiable. However, this function does not really express
the actual objective of our models—to properly segment the different classes, whatever
their areas. Therefore, several loss functions and metrics that are specific to semantic
segmentation have been proposed by researchers to more explicitly capture this objective.

Intersection-over-Union (IoU), presented in Chapter 5, Object Detection Models, is one of
these common metrics. The Sørensen–Dice coefficient (often simply named the Dice
coefficient) is another. Like IoU, it measures how well two sets overlap:

Here, |A| and |B| represent the cardinality of each set (refer to the explanations in the
previous chapter), and  represents the number of elements they have in common
(cardinality of their intersection). IoU and Dice share several properties, and one can
actually help calculate the other:

In semantic segmentation, Dice is, therefore, used to measure how well the predicted mask
for each class overlaps the ground truth mask. For one class, the numerator then represents
the number of correctly classified pixels, and the denominator represents the total number
of pixels belonging to this class in both the predicted and ground truth masks. As a metric,
the Dice coefficient thus does not depend on the relative number of pixels one class takes in
images. For multi-class tasks, scientists usually compute the Dice coefficient for each class
(comparing each pair of predicted and ground truth masks), and then average the results.

From the equation, we can see the Dice coefficient is defined between 0 and 1—its value
reaches 0 if A and B do not overlap at all, and it reaches 1 if they do perfectly. Therefore, to
use it as a loss function that a network should minimize, we need to reverse this scoring.
All in all, for semantic segmentation applied to N classes, the Dice loss is commonly defined
as follows:
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Let's clarify this equation a bit. If a and b are two one-hot tensors, then the Dice numerator
(that is, their intersection) can be approximated by applying the element-wise
multiplication between them (refer to Chapter 1, Computer Vision and Neural Networks), then
by summing together all the values in the resulting tensor. The denominator is obtained by
summing all the elements, a and b. Finally, a small value,  (for instance, below 1e-6), is
usually added to the denominator to avoid dividing by zero if the tensors contain nothing,
and added to the numerator to smooth the result.

Note that, in practice, unlike the ground truth one-hot tensors, the
predictions do not contain binary values. They are composed of the
softmax probabilities ranging continuously from 0 to 1. This loss is
therefore often named soft Dice.

In TensorFlow, this loss can be implemented as follows:

def dice_loss(labels, logits, num_classes, eps=1e-6, spatial_axes=[1, 2]):
    # Transform logits in probabilities, and one-hot the ground truth:
    pred_proba = tf.nn.softmax(logits, axis=-1)
    gt_onehot  = tf.one_hot(labels, num_classes, dtype=tf.float32)
    # Compute Dice numerator and denominator:
    num_perclass = 2 * tf.reduce_sum(pred_proba * gt_onehot,
axis=spatial_axes)
    den_perclass = tf.reduce_sum(pred_proba + gt_onehot, axis=spatial_axes)
    # Compute Dice and average over batch and classes:
    dice = tf.reduce_mean((num_perclass + eps) / (den_perclass + eps))
    return 1 - dice

Both Dice and IoU are important tools for segmentation tasks, and their usefulness is further
demonstrated in the related Jupyter notebook.

Post-processing with conditional random fields
Labeling every pixel properly is a complex task, and it is common to obtain predicted label
maps with poor contours and small incorrect areas. Thankfully, there are some methods
that post-process the results, correcting some obvious defects. Among these methods, the
conditional random fields (CRFs) methods are the most popular because of their overall
efficiency.
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The theory behind this is beyond the scope of this book, but CRFs are able to improve pixel-
level predictions by taking into account the context of each pixel back in the original image.
If the color gradient between two neighboring pixels is small (that is, no abrupt change of
color), chances are that they belong to the same class. Taking into account this spatial and
color-based model, as well as the probability maps provided by the predictors (in our case,
the softmax tensors from CNNs), CRF methods return refined label maps, which are better
with respect to visual contours.

Several ready-to-use implementations are available, such as pydensecrf by Lucas Beyer
(https://github.com/ lucasb- eyer/ pydensecrf), a Python wrapper for dense CRFs with
Gaussian edge potentials proposed by Philipp Krähenbühl and Vladlen Koltun (refer
to Efficient inference in fully connected CRFs with gaussian edge potentials, Advances in neural
information processing systems, 2011). In the last notebook for this chapter, we explain how to
use this framework.

Advanced example – image segmentation for self-
driving cars
As suggested at the beginning of this chapter, we will apply this new knowledge to a
complex real-life use case—the segmentation of traffic images for self-driving cars.

Task presentation
Like human drivers, self-driving cars need to understand their environment and be aware
of the elements around them. Applying semantic segmentation to the video images from a
front camera would allow the system to know whether other cars are around, to know
whether pedestrians or bikes are crossing the road, to follow traffic lines and signs, and
more. 

This is, therefore, a critical process, and researchers are putting in lots of effort into refining
the models. For that reason, multiple related datasets and benchmarks are available. The
Cityscapes dataset (https:/ / www. cityscapes- dataset. com) we chose for our demonstration
is one of the most famous. Shared by Marius Cordts et al. (refer to The Cityscapes Dataset for
Semantic Urban Scene Understanding, Proceedings of the IEEE CVPR Conference), it contains
video sequences from multiple cities, with semantic labels for more than 19 classes (road,
car, plant, and so on). A notebook is specifically dedicated to getting started with this
benchmark.
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Exemplary solution
In the two final Jupyter notebooks for this chapter, FCN and U-Net models are trained to
tackle this task, using several of the tricks presented in this section. We demonstrate how to
properly weigh each class when computing the loss, we present how to post-process the
label maps, and more besides.

As the whole solution is quite long and notebooks are better suited to the present code, we
invite you to pursue the reading there, if you're interested in this use case. This way, we can
dedicate the rest of this chapter to another fascinating problem—instance segmentation.

The more difficult case of instance segmentation
With models trained for object segmentation, the softmax output represents for each pixel
the probability that it belongs to one of N classes. However, it does not express whether
two pixels or blobs of pixels belong to the same instance of a class. For example, given the
predicted label map shown in Figure 6-10, we have no way of counting the number of tree
or building instances.

In the following subsection, we will present two different ways of achieving instance
segmentation by extending solutions for two related tasks that we've tackled
already—object segmentation and object detection.

From object segmentation to instance segmentation
First, we will present some tools that we can use to obtain instance masks from the
segmentation models we just covered. The U-Net authors popularized the idea of tuning
encoders-decoders so that their output can be used for instance segmentation. This idea
was pushed further by Alexander Buslaev, Victor Durnov, and Selim Seferbekov, who
famously won Kaggle's 2018 Data Science Bowl (https:/ /www. kaggle. com/c/ data-
science-bowl-2018), a sponsored competition to advance instance segmentation for
medical applications.

Respecting boundaries
If elements captured by a semantic mask are well-separated/non-overlapping, splitting the
masks to distinguish each instance is not too complicated a task. Plenty of algorithms are
available to estimate the contours of distinct blobs in binary matrices and/or to provide a
separate mask for each blob. For multi-class instance segmentation, this process can just be
repeated for each class mask returned by object segmentation methods, splitting them
further into instances.
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But precise semantic masks should first be obtained, or elements too close to each other
may be returned as a single blob. So, how can we ensure that segmentation models put
enough attention into generating masks with precise contours, at least for non-overlapping
elements? We know the answer already—the only way to teach networks to do something
specific is to adapt their training loss accordingly.

U-Net was developed for biomedical applications, to segment neuronal structures in
microscope images. To teach their network to separate nearby cells properly, the authors
decided to weight their loss function to more heavily penalize misclassified pixels at the
boundaries of several instances. Also illustrated in Figure 6-11, this strategy is quite similar
to the per-class loss weighting we presented in the previous subsection, although here, the
weighting is specifically computed for each pixel. The U-Net authors present a formula to
compute these weight maps based on the ground truth class mask. For each pixel and for
each class, this formula takes into account the pixel's distance to the two nearest class
instances. The smaller the two distances, the higher the weight. The weight maps can be
precomputed and stored along the ground truth masks to be used together during training.

Note that this per-pixel weighting can be combined with the per-class weighting in multi-
class scenarios. The idea to penalize the networks more heavily for certain regions of the
images can also be adapted to other applications (for example, to better segment critical
parts of manufactured objects).

We mentioned the winners of Kaggle's 2018 Data Science Bowl, who put a noteworthy spin
on this idea. For each class, their custom U-Net was outputting two masks: the usual mask
predicting the per-pixel class probability, and a second mask capturing the class
boundaries. The ground truth boundary masks were precomputed based on the class
masks. After proper training, the information from the two predicted masks can be used to
obtain well-separated elements for each class.

Post-processing into instance masks
As discussed earlier in the previous section, once precise masks are obtained, non-
overlapping instances can be identified from them by applying proper algorithms. This
post-processing is usually done using morphological functions, such as mask erosion and
dilation.
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Watershed transforms are another common family of algorithms that further segment the
class masks into instances. These algorithms take a one-channel tensor and consider it as a 
topographic surface, where each value represents an elevation. Using various methods that
we won't go into, they then extract the ridges' tops, representing the instance boundaries.
Several implementations of these transforms are available, some of which are CNN-based,
such as the Deep watershed transform for instance segmentation (Proceedings of the IEEE CVPR
conference, 2017), by Min Bai and Raquel Urtasun from the University of Toronto. Inspired
by the FCN architecture, their network takes for input both the predicted semantic mask
and the original RGB image, and returns an energy map that can be used to identify the
ridges. Thanks to the RGB information, this solution can even separate overlapping
instances with good accuracy.

From object detection to instance segmentation – Mask
R-CNN
A second way of addressing instance segmentation is from the angle of object detection. In
Chapter 5, Object Detection Models, we presented solutions to return the bounding boxes for
object instances appearing in images. In the following paragraphs, we will demonstrate
how these results can be turned into more refined instance masks. More precisely, we will
present Mask R-CNN, a network extending Faster R-CNN.

Applying semantic segmentation to bounding boxes
When we introduced object detection in Chapter 1, Computer Vision and Neural Networks,
we explained that this process is often used as a preliminary step, providing image patches
containing a single instance for further analysis. With this in mind, instance segmentation
becomes a matter of two steps:

Using an object detection model to return bounding boxes for each instance of1.
target classes
Feeding each patch to a semantic segmentation model to obtain the instance2.
mask

If the predicted bounding boxes are accurate (each capturing a whole, single element), then
the task of the segmentation network is straightforward—to classify which pixels in the
corresponding patch belong to the captured class, and which pixels are part of the
background/belong to another class.

This way of solving instance segmentation is advantageous, as we already have all the
necessary tools to implement it (object detection and semantic segmentation models)!
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Building an instance segmentation model with Faster-RCNN
While we could simply use a pretrained detection network followed by a pretrained
segmentation network, the whole pipeline would certainly work better if the two networks
were stitched together and trained in an end-to-end manner. Backpropagating the
segmentation loss through the common layers would better ensure that the features
extracted are meaningful both for the detection and the segmentation tasks. This is pretty
much the original idea behind Mask R-CNN by Kaiming He et al. from Facebook AI
Research (FAIR) in 2017 (Mask R-CNN, Proceedings of the IEEE CVPR conference).

If the name rings a bell, Kaiming He was also among the main authors of
ResNet and Faster R-CNN.

Mask R-CNN is mostly based on Faster R-CNN. Like Faster R-CNN, Mask R-CNN is
composed of a region-proposal network, followed by two branches predicting the class and
the box offset for each proposed region (refer to Chapter 5, Object Detection Models).
However, the authors extended this model with a third parallel branch, outputting a binary
mask for the element in each region (as shown in Figure 6-12). Note that this additional
branch is only composed of a couple of standard and transposed convolutions. As the
authors highlighted in their paper, this parallel processing follows the spirit of Faster R-
CNN, and contrasts with other instance segmentation methods, which are usually
sequential:

Figure 6-12: Mask R-CNN architecture, based on Faster R-CNN
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Thanks to this parallelism, He et al. could decouple the classification and segmentation.
While the segmentation branch is defined to output N binary masks (one for each class, like
any usual semantic segmentation model), only the mask corresponding to the class
predicted by the other branch will be considered for the final prediction and for the training
loss. In other words, only the mask of the instance class contributes to the cross-entropy
loss applied to the segmentation branch. As explained by the authors, this lets the
segmentation branch predict label maps without competition among the classes, thereby
simplifying its task.

Another famous contribution of the Mask R-CNN authors is the RoI align
layer, replacing the RoI pooling of Faster R-CNN. The difference between
the two is actually quite subtle, but provides a non-negligible accuracy
boost. RoI pooling causes quantization, for instance, by discretizing the
coordinates of the subwindow cells (refer to Chapter 5, Object Detection
Models, and Figure 5-13). While this does not really impact the predictions
of the classification branch (it's robust to such small misalignments), this
would affect the quality of the pixel-level prediction of the segmentation
branch. To avoid this, He et al. simply removed the discretization and used
bilinear interpolation instead to obtain the cells' content.

Mask R-CNN distinguished itself at the COCO 2017 challenges, and is widely used
nowadays. Multiple implementations can be found online, for instance, in the folder of the
tensorflow/models repository dedicated to object detection and instance segmentation
(https://github.com/ tensorflow/ models/ tree/ master/ research/ object_ detection).

Summary
In this chapter, we covered several paradigms for pixel-precise applications. We introduced
encoders-decoders and some specific architectures and applied them to multiple tasks from
image denoising to semantic segmentation. We also demonstrated how different solutions
can be combined to tackle more advanced problems, such as instance segmentation.

As we tackle more and more complex tasks, new challenges arise. For example, in semantic
segmentation, precisely annotating images to train models is a time-consuming task.
Available datasets are thus usually scarce, and specific measures should be taken to avoid
overfitting. Furthermore, because the training images and their ground truths are heavier,
well-engineered data pipelines are needed for efficient training.

In the following chapter, we will, therefore, provide in-depth details of how TensorFlow
can be used to effectively augment and serve training batches.
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Questions
What is the particularity of AEs?1.
Which classification architecture are FCNs based on?2.
How can a semantic segmentation model be trained so that it does not ignore3.
small classes?

Further reading
Mask R-CNN (http:/ /openaccess. thecvf. com/content_ iccv_ 2017/ html/ He_ Mask_ R-CNN_
ICCV_2017_paper. html) by Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick:
This nicely written conference paper mentioned in the chapter presents Mask R-CNN,
providing additional illustrations and details that may help you to understand this model.
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3
Section 3: Advanced Concepts
and New Frontiers of Computer

Vision
This final section addresses several contemporary challenges in our domain and provides
essential techniques for those who want to apply computer vision to novel use cases. First,
TensorFlow tools that are designed to process large amounts of data in an efficient manner
are presented. Tackling the opposite scenario, where data is too scarce, you will also be
introduced to domain adaptation, as well as image generation with computer graphics,
GANs, and VAEs. To learn how to extract information from videos, a chapter is dedicated
to recurrent neural networks, their theory, and some illustrated applications. Finally, the
book ends with a discussion about the challenges related to on-device computer vision,
teaching you how to deploy your solutions on mobile phones and in web browsers.

The following chapters will be covered in this section:

Chapter 7, Training on Complex and Scarce Datasets
Chapter 8, Video and Recurrent Neural Networks
Chapter 9, Optimizing Models and Deploying on Mobile Devices



7
Training on Complex and

Scarce Datasets
moData is the lifeblood of deep learning applications. As such, training data should be able
to flow unobstructed into networks, and it should contain all the meaningful information
that is essential to prepare the methods for their tasks. Oftentimes, however, datasets can
have complex structures or be stored on heterogeneous devices, complicating the process of
efficiently feeding their content to the models. In other cases, relevant training images or
annotations can be unavailable, depriving models of the information they need to learn.

Thankfully, for the former cases, TensorFlow provides a rich framework to set up
optimized data pipelines—tf.data. For the latter cases, researchers have been proposing
multiple alternatives when relevant training data is scarce—data augmentation, generation
of synthetic datasets, domain adaptation, and more. These alternatives will also give us the
opportunity to elaborate on generative models, such as variational autoencoders (VAEs)
and generative adversarial networks (GANs).

The following topics will thus be covered in this chapter:

How to build efficient input pipelines with tf.data, extracting and processing
samples of all kinds
How to augment and render images to compensate for training data scarcity
What domain adaptation methods are, and how they can help train more robust
models
How to create novel images with generative models such as VAEs and GANs
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Technical requirements
Once again, several Jupyter notebooks and related source files to illustrate the chapter can
be found in the Git repository dedicated to this book: https:/ /github. com/
PacktPublishing/Hands- On- Computer- Vision- with- TensorFlow- 2/tree/ master/
Chapter07.

Some additional Python packages are required for the notebook, demonstrating how to
render synthetic images from 3D models, such as vispy (http:/ /vispy. org) and plyfile
(https://github. com/ dranjan/ python- plyfile). Installation instructions are
provided in the notebook itself.

Efficient data serving
Well-defined input pipelines cannot only greatly reduce the time needed to train models,
but also help to better preprocess the training samples to guide the networks toward more
performant configurations. In this section, we will demonstrate how to build such
optimized pipelines, diving into the TensorFlow tf.data API.

Introducing the TensorFlow Data API
While tf.data has already appeared multiple times in the Jupyter notebooks, we have yet
to properly introduce this API and its multiple facets.

Intuition behind the TensorFlow Data API
Before covering tf.data, we will provide some context to justify its relevance to the
training of deep learning models.

Feeding fast and data-hungry models
Neural networks (NNs) are data-hungry models. The larger the datasets they can iterate on
during training, the more accurate and robust these neural networks will become. As we
have already noticed in our experiments, training a network is thus a heavy task, which can
take hours, if not days.
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As GPU/TPU hardware architectures are becoming more and more performant, the time
needed to feed forward and backpropagate for each training iteration keeps decreasing (for
those who can afford these devices). The speed is such nowadays that NNs tend to consume
training batches faster than typical input pipelines can produce them. This is especially true
in computer vision. Image datasets are commonly too heavy to be entirely preprocessed,
and reading/decoding image files on the fly can cause significant delays (especially when
repeated millions of times per training).

Inspiration from lazy structures
More generally, with the rise of big data some years ago, plenty of literature, frameworks,
best practices, and more have appeared, offering new solutions to the processing and
serving of huge amounts of data for all kinds of applications. The tf.data API was built
by TensorFlow developers with those frameworks and practices in mind, in order to
provide a clear and efficient framework to feed data to neural networks. More precisely, the goal
of this API is to define input pipelines that are able to deliver data for the next step before the
current step has finished (refer to the official API guide, https:/ /www. tensorflow. org/
guide/performance/ datasets).

As explained in several online presentations by Derek Murray, one of the Google experts
working on TensorFlow (one of his presentations was video recorded and is available at
https://www.youtube. com/ watch? v= uIcqeP7MFH0), pipelines built with the tf.data API
are comparable to lazy lists in functional languages. They can iterate over huge or infinite
datasets batch by batch in a call-by-need fashion (infinite, for instance, when new data
samples are generated on the fly). They provide operations such as map(), reduce(),
filter(), and repeat() to process data and control its flow. They can be compared to
Python generators, but with a more advanced interface and, more importantly, with a C++
backbone for computational performance. Though you could manually implement a
multithreaded Python generator to process and serve batches in parallel with the main
training loop, tf.data does all this out of the box (and most probably in a more optimized
manner).

Structure of TensorFlow data pipelines
As indicated in the previous paragraphs, data scientists have already developed extensive
know-how regarding the processing and pipelining of large datasets, and the structure of
tf.data pipelines directly follows these best practices.
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Extract, Transform, Load
The API guide also makes the parallel between data pipelines for training and Extract,
Transform, Load (ETL) processes. ETL is a common paradigm for data processing in
computer science. In computer vision, ETL pipelines in charge of feeding models with
training data usually look like this:

Figure 7-1: A typical ETL pipeline to provide data for the training of computer vision models

The extraction step consists of selecting data sources and extracting their content. These
sources may be listed explicitly by a document (for instance, a CSV file containing the
filenames for all the images), or implicitly (for instance, with all the dataset's images
already stored in a specific folder). Sources may be stored on different devices (local or
remote), and it is also the task of the extractor to list these different sources and extract their
content. For example, it is common in computer vision to have datasets so big that they
have to be stored on multiple hard drives. To train NNs in a supervised manner, we also
need to extract the annotations/ground truths along the images (for instance, class labels
contained in CSV files, and ground truth segmentation masks stored in another folder).

The fetched data samples should then be transformed. One of the most common
transformations is the parsing of extracted data samples into a common format. For
instance, this means parsing the bytes read from image files into a matrix representation
(for instance, to decode JPEG or PNG bytes into image tensors). Other heavy
transformations can be applied in this step, such as cropping/scaling images to the same
dimensions, or augmenting them with various random operations. Again, the same applies
to annotations for supervised learning. They should also be parsed, for instance, into
tensors that could later be handed to loss functions.

Once ready, the data is loaded into the target structure. For the training of machine learning
methods, this means sending the batch samples into the device in charge of running the
model, such as the selected GPU(s). The processed dataset can also be cached/saved
somewhere for later use.
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This ETL process can already be observed, for instance, in the Jupyter notebook setting up
the Cityscapes input pipeline in Chapter 6, Enhancing and Segmenting Images. The input
pipeline was iterating over the input/ground truth filenames provided, and parsing and
augmenting their content, before passing the results as batches to our training processes.

API interface
tf.data.Dataset is the central class provided by the tf.data API (refer to the
documentation at https:/ / www. tensorflow. org/ api_ docs/ python/ tf/ data/ Dataset).
Instances of this class (which are simply called datasets) represent data sources, following
the lazy list paradigm we just presented.

Datasets can be initialized in a multitude of ways, depending on how their content is
initially stored (in files, NumPy arrays, tensors, and others). For example, a dataset can be
based on a list of image files, as follows:

dataset = tf.data.Dataset.list_files("/path/to/dataset/*.png")

Datasets also have numerous methods they can apply to themselves in order to provide a
transformed dataset. For example, the following function returns a new dataset instance
with the file's contents properly transformed (that is, parsed) into homogeneously resized
image tensors:

def parse_fn(filename):
    img_bytes = tf.io.read_file(filename)
    img = tf.io.decode_png(img_bytes, channels=3)
    img = tf.image.resize(img, [64, 64])
    return img  # or for instance, `{'image': img}` if we want to name this
input
dataset = dataset.map(map_func=parse_fn)

The function passed to .map() will be applied to every sample in the dataset when
iterating. Indeed, once all the necessary transformations are applied, datasets can be used
as any lazy lists/generators, as follows:

print(dataset.output_types)  # > "tf.uint8"
print(dataset.output_shapes) # > "(64, 64, 3)"
for image in dataset:
     # do something with the image
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All the data samples are already returned as Tensor, and can easily be loaded into the
device(s) in charge of the training. To make things even more straightforward,
tf.estimator.Estimator and tf.keras.Model instances can directly receive a
tf.data.Dataset object as input for their training (for estimators, the dataset operations
have to be wrapped into a function returning the dataset) as follows:

keras_model.fit(dataset, ...)     # to train a Keras model on the data
def input_fn():
    # ... build dataset
    return dataset
tf_estimator.train(input_fn, ...) # ... or to train a TF estimator

With estimators and models tightly integrating the tf.data API, TensorFlow 2 has made
data preprocessing and data loading both modular and clear.

Setting up input pipelines
Keeping in mind the ETL procedure, we will develop some of the most common and
important methods provided by tf.data, at least for computer vision applications. For an
exhaustive list, we invite our readers to refer to the documentation (https:/ / www.
tensorflow.org/api_ docs/ python/ tf/ data).

Extracting (from tensors, text files, TFRecord files, and
more)
Datasets are usually built for specific needs (companies gathering images to train smarter
algorithms, researchers setting up benchmarks, and so on), so it is rare to find two datasets
with the same structure and format. Thankfully for us, TensorFlow developers are well
aware of this and have provided plenty of tools to list and extract data.

From NumPy and TensorFlow data
First of all, if data samples were already somehow loaded by the program (for instance, as
NumPy or TensorFlow structures), they can be passed directly to tf.data using the
.from_tensors() or .from_tensor_slices() static methods.
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Both accept nested array/tensor structures, but the latter will slice the data into samples
along the first axis as follows:

x, y = np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8])
d = tf.data.Dataset.from_tensors((x,y))
print(d.output_shapes) # > (TensorShape([4]), TensorShape([4]))
d_sliced = tf.data.Dataset.from_tensor_slices((x,y))
print(d_sliced.output_shapes) # > (TensorShape([]), TensorShape([]))

As we can observe, the second dataset, d_sliced, ends up containing four pairs of
samples, each containing only one value.

From files
As seen in a previous example, datasets can iterate over files using the .list_files()
static method. This method creates a dataset of string tensors, each containing the path of
one of the listed files. Each file can then be opened using, for instance,
tf.io.read_file() (tf.io contains file-related operations).

The tf.data API also provides some specific datasets to iterate over binary or text files.
tf.data.TextLineDataset() can be used to read documents line by line (useful for
some public datasets that are listing their image files and/or labels in text files);
tf.data.experimental.CsvDataset() can parse CSV files and return their content line
by line too.

tf.data.experimental does not ensure the same backward
compatibility as other modules. By the time this book reaches our readers,
methods may have been moved to tf.data.Dataset or simply removed
(for methods that are temporary solutions to some TensorFlow
limitations). We invite our readers to check the documentation.

From other inputs (generator, SQL database, range, and others)
Although we will not list them all, it is good to keep in mind that tf.data.Dataset can be
defined from a wide range of input sources. For example, datasets simply iterating over
numbers can be initialized with the .range() static method. Datasets can also be built
upon Python generators with .from_generator(). Finally, even if elements are stored in
a SQL database, TensorFlow provides some (experimental) tools to query it, including the
following:

dataset = tf.data.experimental.SqlDataset(
    "sqlite", "/path/to/my_db.sqlite3",
    "SELECT img_filename, label FROM images", (tf.string, tf.int32))
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For more specific dataset instantiators, we invite our readers to check the tf.data
documentation.

Transforming the samples (parsing, augmenting, and
more)
The second step of ETL pipelines is transform. Transformations can be split into two
types—those that affect data samples individually, and those that affect a dataset as a
whole. In the following paragraphs, we will cover the former transformations and explain
how our samples can be preprocessed.

Parsing images and labels
In the parse_fn() method we wrote in the previous subsection for dataset.map(),
tf.io.read_file() was called to read the file corresponding to each filename listed by
the dataset, and then tf.io.decode_png() converted the bytes into an image tensor.

tf.io also contains decode_jpeg(), decode_gif(), and more. It also
provides the more generic decode_image(), which can infer which
image format to use (refer to the documentation at https:/ /www.
tensorflow. org/ api_ docs/ python/ tf/io).

Furthermore, numerous methods can be applied to parsing computer vision labels.
Obviously, if the labels are also images (for instance, for image segmentation or edition),
the methods we just listed can be reused all the same. If the labels are stored in text files,
TextLineDataset or FixedLengthRecordDataset (refer to the documentation at
https://www.tensorflow. org/ api_ docs/ python/ tf/data) can be used to iterate over
them, and modules such as tf.strings can help parse the lines/records. For example, let's
imagine we have a training dataset with a text file listing the filename of an image and its
class identifier on each line, separated by a comma. Each pair of images/labels could be
parsed this way:

def parse_fn(line):
    img_filename, img_label = tf.strings.split(line, sep=',')
    img = tf.io.decode_image(tf.io.read_file(img_filename))[0]
    return {'image': img, 'label': tf.strings.to_number(img_label)}
dataset = tf.data.TextLineDataset('/path/to/file.txt').map(parse_fn)

https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/io
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data


Training on Complex and Scarce Datasets Chapter 7

[ 221 ]

As we can observe, TensorFlow provides multiple helper functions to process and convert
strings, to read binary files, to decode PNG or JPEG bytes into images, and so on. With
these functions, pipelines to handle heterogeneous data can be set up with minimal effort.

Parsing TFRecord files
While listing all the image files and then iterating to open and parse them is a
straightforward pipeline solution, it can be suboptimal. Loading and parsing image files
one by one is resource-consuming. Storing a large number of images together into a binary
file would make the read-from-disk operations (or streaming operations for remote files)
much more efficient. Therefore, TensorFlow users are often advised to use the TFRecord file
format, based on Google's Protocol Buffers, a language-neutral, platform-neutral extensible
mechanism for serializing structured data (refer to the documentation at https:/ /
developers.google. com/ protocol- buffers).

TFRecord files are binary files aggregating data samples (such as images, labels, and
metadata). A TFRecord file contains serialized tf.train.Example instances, which are
basically dictionaries naming each data element (called features according to this API)
composing the sample (for example, {'img': image_sample1, 'label':
label_sample1, ...}). Each element/feature that a sample contains is an instance of
tf.train.Feature or of its subclasses. These objects store the data content as lists of
bytes, of floats, or of integers (refer to the documentation at https:/ / www.tensorflow. org/
/api_docs/python/ tf/ train).

Because it was developed specifically for TensorFlow, this file format is very well
supported by tf.data. In order to use TFRecord files as data source for input pipelines,
TensorFlow users can pass the files to tf.data.TFRecordDataset(filenames) (refer to
the documentation at https:/ /www. tensorflow. org/ api_ docs/ python/ tf/ data/
TFRecordDataset), which can iterate over the serialized tf.train.Example elements they
contain. To parse their content, the following should be done:

dataset = tf.data.TFRecordDataset(['file1.tfrecords','file2.tfrecords'])
# Dictionary describing the features/tf.trainExample structure:
feat_dic = {'img': tf.io.FixedLenFeature([], tf.string), # image's bytes
            'label': tf.io.FixedLenFeature([1], tf.int64)} # class label
def parse_fn(example_proto): # Parse a serialized tf.train.Example
    sample = tf.parse_single_example(example_proto, feat_dic)
    return tf.io.decode_image(sample['img])[0], sample['label']
dataset = dataset.map(parse_fn)
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tf.io.FixedLenFeature(shape, dtype, default_value) lets the pipeline know
what kind of data to expect out of the serialized sample, which can then be parsed with a
single command.

In one of the Jupyter notebooks, we cover TFRecord in more detail,
explaining step by step how data can be preprocessed and stored as
TFRecord files, and how these files can then be used as a data source for
tf.data pipelines.

Editing samples
The .map() method is central to tf.data pipelines. Besides parsing samples, it is also
applied to edit them further. For example, in computer vision, it is common for some
applications to crop/resize input images to the same dimensions (for instance, applying
tf.image.resize()) or to one-hot target labels (tf.one_hot()).

As we will detail later in this chapter, it is also recommended to wrap the optional
augmentations for training data into a function passed to .map().

Transforming the datasets (shuffling, zipping,
parallelizing, and more)
The API also provides numerous functions to transform one dataset into another, to adapt
its structure, or to merge it with other data sources.

Structuring datasets
In data science and machine learning, operations such as filtering data, shuffling samples,
and stacking samples into batches are extremely common. The tf.data API offers simple
solutions to most of those (refer to the documentation at https:/ /www. tensorflow. org/
api_docs/python/ tf/ data/ Dataset). For example, some of the most frequently used
datasets' methods are as follows:

.batch(batch_size, ...), which returns a new dataset, with the data
samples batched accordingly (tf.data.experimental.unbatch() does the
opposite). Note that if .map() is called after .batch(), the mapping function
will therefore receive batched data as input.
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.repeat(count=None), which repeats the data count times (infinitely if count
= None).

.shuffle(buffer_size, seed, ...), which shuffles elements after filling a
buffer accordingly (for instance, if buffer_size = 10, the dataset will virtually
divide the dataset into subsets of 10 elements, and randomly permute the
elements in each, before returning them one by one). The larger the buffer size is,
the more stochastic the shuffling becomes, but also the heavier the process is.

.filter(predicate), which keeps/removes elements depending on the
Boolean output of the predicate function provided. For example, if we wanted
to filter a dataset to remove elements stored online, we could use this method as
follows:

url_regex = "(?i)([a-z][a-z0-9]*)://([^ /]+)(/[^ ]*)?|([^ @]+)@([^
@]+)"
def is_not_url(filename): #NB: the regex isn't 100% sure/covering
all cases
    return ~(tf.strings.regex_full_match(filename, url_regex))
dataset = dataset.filter(is_not_url)

.take(count), which returns a dataset containing the first count elements at
most.
.skip(count), which returns a dataset without the first count elements. Both
methods can be used to split a dataset, for instance, into training and validation
sets as follows:

num_training_samples, num_epochs = 10000, 100
dataset_train = dataset.take(num_training_samples)
dataset_train = dataset_train.repeat(num_epochs)
dataset_val   = dataset.skip(num_training_samples)

Many other methods are available to structure data or to control its flow, usually inspired
by other data processing frameworks (such as .unique(), .reduce(), and
.group_by_reducer()).
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Merging datasets
Some methods can also be used to merge datasets together. The two most straightforward
ones are .concatenate(dataset) and the static .zip(datasets) (refer to the
documentation at https:/ / www. tensorflow. org/ api_ docs/ python/ tf/ data/ Dataset). The
former concatenates the samples of the dataset provided with those of the current one, while
the latter combines the dataset's elements into tuples (similar to Python's zip()) as follows:

d1 = tf.data.Dataset.range(3)
d2 = tf.data.Dataset.from_tensor_slices([[4, 5], [6, 7], [8, 9]])
d = tf.data.Dataset.zip((d1, d2))
# d will return [0, [4, 5]], [1, [6, 7]], and [2, [8, 9]]

Another method often used to merge data from different sources is
.interleave(map_func, cycle_length, block_length, ...) (refer to the
documentation at https:/ / www. tensorflow. org/ api_ docs/ python/ tf/ data/
Dataset#interleave). This applies the map_func function to the elements of the datasets
and interleaves the results. Let's now go back to the example presented in the Parsing images
and labels section, with image files and classes listed in a text file. If we have several such
text files and want to combine all their images into a single dataset, .interleave() could
be applied as follows:

filenames = ['/path/to/file1.txt', '/path/to/file2.txt', ...]
d = tf.data.Dataset.from_tensor_slices(filenames)
d = d.interleave(lambda f: tf.data.TextLineDataset(f).map(parse_fn),
                 cycle_length=2, block_length=5)

The cycle_length parameter fixes the number of elements processed concurrently. In our
preceding example, cycle_length = 2 means that the function will concurrently iterate
over the lines of the first two files, before iterating over the lines of the third and fourth
files, and so on. The block_length parameter controls the number of consecutive samples
returned per element. Here, block_length = 5 means that the method will yield a
maximum of 5 consecutive lines from one file before iterating over another.

With all these methods and much more available, complex pipelines for data extraction and
transformation can be set up with minimal effort, as already illustrated in some previous
notebooks (for instance, for the CIFAR and Cityscapes datasets).
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Loading
Another advantage of tf.data is that all its operations are registered in the TensorFlow
operational graph, and the extracted and processed samples are returned as Tensor
instances. Therefore, we do not have much to do regarding the final step of ETL, that is, the
loading. As with any other TensorFlow operation or tensor, the library will take care of
loading them into the target devices—unless we want to choose them ourselves (for
instance, wrapping the creation of datasets with tf.device()). When we start iterating
over a tf.data dataset, generated samples can be directly passed to the models.

Optimizing and monitoring input pipelines
While this API simplifies the setting up of efficient input pipelines, some best practices
should be followed to fully harness its power. After sharing some recommendations from
TensorFlow creators, we will also present how to monitor and reuse pipelines.

Following best practices for optimization
The API provides several methods and options to optimize the data processing and flow,
which we will now cover in detail.

Parallelizing and prefetching
By default, most of the dataset methods are processing samples one by one, with no
parallelism. However, this behavior can be easily changed, for example, to take advantage
of multiple CPU cores. For instance, the .interleave() and .map() methods both have a
num_parallel_calls parameter to specify the number of threads they can create (refer to
the documentation at https:/ /www. tensorflow. org/ api_ docs/ python/ tf/ data/ Dataset).
Parallelizing the extraction and transformation of images can greatly decrease the time
needed to generate training batches, so it is important to always properly set
num_parallel_calls (for instance, to the number of CPU cores the processing machine
has).
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TensorFlow also provides
tf.data.experimental.parallel_interleave() (refer to the
documentation at https:/ /www.tensorflow. org/versions/ r2. 0/api_
docs/ python/ tf/ data/ experimental/ parallel_ interleave), a
parallelized version of .interleave() with some additional options. For
instance, it has a sloppy parameter, which, if set to True, allows each
thread to return its output as soon as it is ready. On the one hand, this
means that the data will no longer be returned in a deterministic order,
but, on the other hand, this can further improve the pipeline performance.

Another performance-related feature of tf.data is the possibility to prefetch data samples.
When applied through the dataset's .prefetch(buffer_size) method, this feature
allows the input pipelines to start preparing the next samples while the current ones are
being consumed, instead of waiting for the next dataset call. Concretely, this allows
TensorFlow to start preparing the next training batch(es) on the CPU(s), while the current
batch is being used by the model running on the GPU(s), for instance.

Prefetching basically enables the parallelization of the data preparation and training operations in
a producer-consumer fashion. Enabling parallel calls and prefetching can thus be done with
minor changes, while greatly reducing the training time, as follows:

dataset = tf.data.TextLineDataset('/path/to/file.txt')
dataset = dataset.map(parse_fn, num_threads).batch(batch_size).prefetch(1)

Inspired by TensorFlow's official guide (https:/ / www.tensorflow. org/guide/
performance/datasets), Figure 7-2 illustrates the performance gain these best practices can
bring:
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Figure 7-2: Visual representation of the performance gain obtained from parallelizing and prefetching

By combining these different optimizations, CPU/GPU idle time can be reduced further.
The performance gain in terms of preprocessing time can become really significant, as
demonstrated in one of the Jupyter notebooks for this chapter.

Fusing operations
It is also useful to know that tf.data offers functions that combine some key operations
for greater performance or more reliable results.

For example, tf.data.experimental.shuffle_and_repeat(buffer_size, count,
seed) fuses together the shuffling and repeating operations, making it easy to have
datasets shuffled differently at each epoch (refer to the documentation at https:/ /www.
tensorflow.org/versions/ r2. 0/ api_ docs/ python/ tf/ data/ experimental/ shuffle_ and_
repeat).

Back to optimization matters, tf.data.experimental.map_and_batch(map_func,
batch_size, num_parallel_batches, ...) (refer to the documentation at https:/ /
www.tensorflow.org/ versions/ r2. 0/ api_ docs/ python/ tf/ data/ experimental/ map_ and_
batch) applies the map_func function and then batches the results together. By fusing these
two operations, this solution prevents some computational overheads and should thus be
preferred.
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map_and_batch() is meant to disappear, as TensorFlow 2 is
implementing several tools to automatically optimize the tf.data
operations, for instance, grouping multiple .map() calls together,
vectorizing the .map() operations and fusing them directly with
.batch(), fusing .map() and .filter(), and more. Once this automatic
optimization has been fully implemented and validated by the
TensorFlow community, there will be no further need for
map_and_batch() (once again, this may already be the case by the time
you reach this chapter).

Passing options to ensure global properties
In TensorFlow 2, it is also possible to configure datasets by setting global options, which will
affect all their operations. tf.data.Options is a structure that can be passed to datasets
through their .with_options(options) method and that has several attributes to
parametrize the datasets (refer to the documentation at https:/ / www.tensorflow. org/api_
docs/python/tf/data/ Options).

For instance, if the .experimental_autotune Boolean attribute is set to True,
TensorFlow will automatically tune the values of num_parallel_calls for all the
dataset's operations, according to the capacity of the target machine(s).

The attribute currently named .experimental_optimization contains a set of sub-
options related to the automatic optimization of the dataset's operations (refer to the
previous information box). For example, its own .map_and_batch_fusion attribute can
be set to True to let TensorFlow automatically fuse the .map() and .batch() calls;
.map_parallelization can be set to True to let TensorFlow automatically parallelize
some of the mapping functions, and so on, as follows:

options = tf.data.Options()
options.experimental_optimization.map_and_batch_fusion = True
dataset = dataset.with_options(options)

Plenty of other options are available (and more may come). We invite our readers to have a
look at the documentation, especially if the performance of their input pipelines is a key
matter.
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Monitoring and reusing datasets
We presented multiple tools to optimize tf.data pipelines, but how can we make sure
they positively affect the performance? Are there other tools to figure out which operations
may be slowing down the data flow? In the following paragraphs, we will answer these
questions by demonstrating how input pipelines can be monitored, as well as how they can
be cached and restored for later use.

Aggregating performance statistics
One of the novelties of TensorFlow 2 is the possibility to aggregate some statistics regarding
tf.data pipelines, such as their latency (for the whole process and/or for each operation)
or the number of bytes produced by each of their elements.

TensorFlow can be notified to gather these metric values for a dataset through its global
options (refer to previous paragraphs). The tf.data.Options instances have a
.experimental_stats field from the tf.data.experimental.StatsOption class
(refer to the documentation at https:/ / www. tensorflow. org/ versions/ r2. 0/api_ docs/
python/tf/data/experimental/ StatsOptions). This class defines several options related to
the aforementioned dataset metrics (for instance, setting .latency_all_edges to True to
measure the latency). It also has a .aggregator attribute, which can receive an instance of
tf.data.experimental.StatsAggregator (refer to the documentation at https:/ /www.
tensorflow.org/versions/ r2. 0/ api_ docs/ python/ tf/ data/ experimental/
StatsAggregator). As its name implies, this object will be attached to the dataset and
aggregate the requested statistics, providing summaries that can be logged and visualized
in TensorBoard, as shown in the following code sample.

At the time of writing this book, these features are still highly
experimental and are not fully implemented yet. For example, there is no
easy way to log the summaries containing the aggregated statistics. Given
how important monitoring tools are, we still covered these features,
believing they should soon be fully available.

Dataset statistics can, therefore, be aggregated and saved (for instance, for TensorBoard) as
follows:

# Use utility function to tell TF to gather latency stats for this dataset:
dataset = dataset.apply(tf.data.experimental.latency_stats("data_latency"))
# Link stats aggregator to dataset through the global options:
stats_aggregator = tf.data.experimental.StatsAggregator()
options = tf.data.Options()
options.experimental_stats.aggregator = stats_aggregator
dataset = dataset.with_options(options)
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# Later, aggregated stats can be obtained as summary, for instance, to log
them:
summary_writer = tf.summary.create_file_writer('/path/to/summaries/folder')
with summary_writer.as_default():
    stats_summary = stats_aggregator.get_summary()
    # ... log summary with `summary_writer` for Tensorboard (TF2 support
coming soon)

Note that it is possible to obtain statistics not only for the input pipeline as a whole, but also
for each of its inner operations.

Caching and reusing datasets
Finally, TensorFlow offers several functions to cache generated samples or to save tf.data
pipeline states.

Samples can be cached by calling the dataset's .cache(filename) method. If cached, data
will not have to undergo the same transformations when iterated over again (that is, for the
next epochs). Note that the content of the cached data will not be the same depending on
when the method is applied. Take the following example:

dataset = tf.data.TextLineDataset('/path/to/file.txt')
dataset_v1 = dataset.cache('cached_textlines.temp').map(parse_fn)
dataset_v2 = dataset.map(parse_fn).cache('cached_images.temp')

The first dataset will cache the samples returned by TextLineDataset, that is, the text
lines (the cached data is stored in the specified file, cached_textlines.temp). The
transformation done by parse_fn (for instance, opening and decoding the corresponding
image file for each text line) will have to be repeated for each epoch. On the other hand, the
second dataset is caching the samples returned by parse_fn, that is, the images. While this
may save precious computational time for the next epochs, this also means caching all the
resulting images, which may be memory inefficient. Therefore, caching should be carefully
thought through.

Finally, it is also possible to save the state of a dataset, for instance, so that if the training is
somehow stopped, it can be resumed without re-iterating over the precedent input batches.
As mentioned in the documentation, this feature can have a positive impact on models
being trained on a small number of different batches (and thus with a risk of overfitting).
For estimators, one solution to save the iterator state of a dataset is to set up the following
hook—tf.data.experimental.CheckpointInputPipelineHook (refer to the
documentation at https:/ / www. tensorflow. org/ api_ docs/ python/ tf/ data/
experimental/CheckpointInputPipelineHook).
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Aware of how important a configurable and optimized data flow is to machine learning
applications, TensorFlow developers are continuously providing new features to refine the
tf.data API. As covered in this past section and illustrated in the related Jupyter
Notebook, taking advantage of these features—even the experimental ones—can greatly 
reduce implementation overheads and training time.

How to deal with data scarcity
Being able to efficiently extract and transform data for the training of complex applications
is primordial, but this is assuming that enough data is available for such tasks in the first
place. After all, NNs are data-hungry methods and even though we are in the big data era,
large enough datasets are still tenuous to gather and even more difficult to annotate. It can
take several minutes to annotate a single image (for instance, to create the ground truth
label map for semantic segmentation models), and some annotations may have to be
validated/corrected by experts (for instance, when labeling medical pictures). In some cases,
images themselves may not be easily available. For instance, it would be too time- and
money-consuming to take pictures of every manufactured object and their components
when building automation models for industrial plants.

Data scarcity is, therefore, a common problem in computer vision, and much effort has
been expended trying to train robust models despite the lack of training images or rigorous
annotations. In this section, we will cover several solutions proposed over the years, and
we will demonstrate their benefits and limitations in relation to various tasks.

Augmenting datasets
We have been mentioning this first approach since Chapter 4, Influential Classification Tools,
and we have already put it into use for some applications in previous notebooks. This is
finally the opportunity for us to properly present what data augmentation is and how to
apply it with TensorFlow 2.

Overview
As indicated before, augmenting datasets means applying random transformations to their
content in order to obtain different-looking versions for each. We will present the benefits
of this procedure, as well as some related best practices.
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Why augment datasets?
Data augmentation is probably the most common and simple method to deal with overly
small training sets. It can virtually multiply their number of images by providing different
looking versions of each. These various versions are obtained by applying a combination of
random transformations, such as scale jittering, random flipping, rotation, and color shift.
Data augmentation can incidentally help prevent overfitting, which would usually happen
when training a large model on a small set of images.

But even when enough training images are available, this procedure should still be
considered. Indeed, data augmentation has other benefits. Even large datasets can suffer
from biases, and data augmentation can compensate for some of them. We will illustrate this
concept with an example. Let's imagine we want to build a classifier for brush versus pen
pictures. However, the pictures for each class were gathered by two different teams that did
not agree on a precise acquisition protocol beforehand (for instance, which camera model
or lighting conditions to opt for). As a result, the brush training images are clearly darker
and noisier than the pen ones. Since NNs are trained to use any visual cues to predict
correctly, the models learning on such a dataset may end up relying on these obvious
lighting/noise differences to classify the objects, instead of purely focusing on the object
representations (such as their shape and texture). Once in production, these models will
fare poorly, no longer being able to rely on these biases. This example is illustrated in Figure
7-3:

Figure 7-3: Example of a classifier trained on a biased dataset, unable to apply its knowledge to the target data

Randomly adding some noise to the pictures or randomly adjusting their brightness would
prevent the networks from relying on these cues. These augmentations would thus partially
compensate for the dataset's biases, and make these visual differences too unpredictable to
be used by the networks (that is, preventing models from overfitting biased datasets).
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Augmentations can also be used to improve the dataset's coverage. Training datasets
cannot cover all image variations (otherwise we would not have to build machine learning
models to deal with new different images). If, for example, all the images of a dataset were
shot under the same light, then the recognition models trained on them would fare really
poorly with images taken under different lighting conditions. These models were basically
not taught that lighting conditions is a thing and that they should learn to ignore it and focus
on the actual image content. Therefore, randomly editing the brightness of the training
images before passing them to the networks would educate them on this visual property.
By better preparing them for the variability of target images, data augmentation helps us to
train more robust solutions.

Considerations
Data augmentation can take multiple forms, and several options should be considered
when performing this procedure. First of all, data augmentation can be done either offline
or online. Offline augmentation means transforming all the images before the training even
starts, and saving the various versions for later use. Online means applying the
transformations when generating each new batch inside the training input pipelines.

Since augmentation operations can be computationally heavy, applying them beforehand
and storing the results can be advantageous in terms of latency for the input pipelines.
However, this implies having enough memory space to store the augmented dataset, often
limiting the number of different versions generated. By randomly transforming the images
on the fly, online solutions can provide different looking versions for every epoch. While
computationally more expensive, this means presenting more variation to the networks.
The choice between offline and online augmentation is thus conditioned by the
memory/processing capacity of the available devices, and by the desired variability.

The variability is itself conditioned by the choice of transformations to be applied. For
example, if only random horizontal and vertical flipping operations are applied, then this
means a maximum of four different versions per image. Depending on the size of the
original dataset, you could consider applying the transformations offline and storing the
four-times-larger dataset. On the other hand, if operations such as random cropping and
random color shift are considered, then the number of possible variations can become
almost infinite.
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When setting up data augmentation, the first thing to do, therefore, is to shortlist the
relevant transformations (and their parameters when applicable). The list of possible
operations is huge, but not all make sense with regard to the target data and use cases. For
instance, vertical flipping should only be considered if the content of images can be
naturally found upside down (such as close-up images of larger systems or
birdview/satellite images). Vertically flipping images of urban scenes (such as the Cityscapes
images) would not help the models at all, since they would (hopefully) never be confronted
with such upside down images.

Similarly, you should be careful to properly parameterize some transformations such as
cropping or brightness adjustment. If an image becomes so dark/bright that its content
cannot be identified anymore, or if the key elements are cropped out, then the models won't
learn anything from training on this edited picture (it may even confuse them if too many
images are inappropriately augmented). Therefore, it is important to shortlist and
parametrize transformations that add meaningful variations to the dataset (with respect to
the target use cases) while preserving its semantic content.

Figure 7-4 provides some examples of what invalid and valid augmentations can be for an
autonomous driving application:

Figure 7-4: Valid/invalid augmentations for an autonomous driving application

It is also important to keep in mind that data augmentation cannot fully compensate for
data scarcity. If we want a model to be able to recognize cats, but only have training images
of Persian cats, no straightforward image transformations will help our model identify
other cat breeds (for instance, Sphynx cats).

Some advanced data augmentation solutions include applying computer
graphics or encoder-decoder methods to alter images. For example,
computer graphics algorithms could be used to add fake sun blares or
motion blur, and CNNs could be trained to transform daytime images
into nighttime ones. We will develop some of these techniques later in this
chapter.
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Finally, you should not forget to transform the labels accordingly, when applicable. This
especially concerns detection and segmentation labels, when geometrical transformations
are performed. If an image is resized or rotated, its related label map or bounding boxes
should undergo the same operation(s) to stay aligned (refer to the Cityscapes experiments in
Chapter 6, Enhancing and Segmenting Images).

Augmenting images with TensorFlow
Having clarified why and when images should be augmented, it is time to properly explain
how. We will introduce some useful tools provided by TensorFlow to transform images,
sharing a number of concrete examples.

TensorFlow Image module
Python offers a huge variety of frameworks to manipulate and transform images. Besides
the generic ones such as OpenCV (https:/ /opencv. org) and Python Imaging Library
(PIL—http://effbot. org/ zone/ pil- index. htm), some packages specialize in providing
data augmentation methods for machine learning systems. Among those, imgaug by
Alexander Jung (https:/ / github. com/ aleju/ imgaug) and Augmentor by Marcus D. Bloice
(https://github.com/ mdbloice/ Augmentor) are probably the most widely used, both
offering a wide range of operations and a neat interface. Even Keras provides functions to
preprocess and augment image datasets. ImageDataGenerator (https:/ / keras. io/
preprocessing/image) can be used to instantiate an image batch generator covering data
augmentation (such as image rotation, zoom, or channel shifting).

However, TensorFlow has its own module for image processing that can seamlessly
integrate tf.data pipelines—tf.image (refer to the documentation at https:/ / www.
tensorflow.org/api_ docs/ python/ tf/ image). This module contains all sorts of functions.
Some of them implement common image-related metrics (for instance, tf.image.psnr()
and tf.image.ssim()), and others can be used to convert images from one format to
another (for instance, tf.image.rgb_to_grayscale()). But before all else, tf.image
implements multiple image transformations. Most of these functions come in pairs—one
function implementing a fixed version of the operation (such as
tf.image.central_crop(), tf.image.flip_left_right() and
tf.image.adjust_jpeg_quality()) and the other a randomized version (such as
tf.image.random_crop(), tf.image.random_flip_left_right(), and
tf.image.random_jpeg_quality()). The randomized functions usually take for
arguments a range of values from which the attributes of the transformation are randomly
sampled (such as min_jpeg_quality and max_jpeg_quality for
tf.image.random_jpeg_quality() parameters).
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Directly applicable to image tensors (single or batched), the tf.image functions are
recommended within tf.data pipelines for online augmentation (grouping the operations
into a function passed to .map()).

Example – augmenting images for our autonomous driving application
In the previous chapter, we introduced some state-of-the-art models for semantic
segmentation and applied them to urban scenes in order to guide self-driving cars. In the
related Jupyter notebooks, we provided an _augmentation_fn(img, gt_img) function
passed to dataset.map() to augment the pictures and their ground truth label maps.
Though we did not provide detailed explanations back then, this augmentation function
illustrates well how tf.image can augment complex data.

For example, it offers a simple solution to the problem of transforming both the input
images and their dense labels. Imagine we want some of the samples to be randomly
horizontally flipped. If we call tf.image.random_flip_left_right() once for the input
image and once for the ground truth label map, there is only a half chance that both images
will undergo the same transformation.

One solution to ensure that the same set of geometrical transformations are applied to  the
image pairs is the following:

img_dim, img_ch = tf.shape(img)[-3:-1], tf.shape(img)[-1]
# Stack/concatenate the image pairs along the channel axis:
stacked_imgs = tf.concat([img, tf.cast(gt_img, img.dtype)], -1)
# Apply the random operations, for instance, horizontal flipping:
stacked_imgs = tf.image.random_flip_left_right(stacked_imgs)
# ... or random cropping (for instance, keeping from 80 to 100% of the
images):
rand_factor = tf.random.uniform([], minval=0.8, maxval=1.)
crop_shape = tf.cast(tf.cast(img_dim, tf.float32) * rand_factor, tf.int32)
crop_shape = tf.concat([crop_shape, tf.shape(stacked_imgs)[-1]], axis=0)
stacked_imgs = tf.image.random_crop(stacked_imgs, crop_shape)
# [...] (apply additional geometrical transformations)
# Unstack to recover the 2 augmented tensors:
img = stacked_imgs[..., :img_ch]
gt_img = tf.cast(stacked_imgs[..., img_ch:], gt_img.dtype)
# Apply other transformations in the pixel domain, for instance:
img = tf.image.random_brightness(image, max_delta=0.15)
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Since most tf.image geometrical functions do not have any limitations regarding the
number of channels the images can have, concatenating images along the channel axis
beforehand is a simple trick to ensure that they undergo the same geometrical operations.

The preceding example also illustrates how some operations can be further randomized by
sampling some parameters from random distributions. tf.image.random_crop(images,
size) returns crops of a fixed size, extracted from random positions in the images. Picking
a size factor with tf.random.uniform(), we obtain crops that are not only randomly
positioned in the original images, but also randomly dimensioned.

Finally, this example is also a reminder that not all transformations should be applied to
both the input images and their label maps. Trying to adjust the brightness or saturation of
label maps would not make sense (and would, in some cases, raise an exception).

We will conclude this subsection on data augmentation by emphasizing that this procedure
should always be considered. Even when training on large datasets, augmenting their
images can only make the models more robust—as long as the random transformations are
selected and applied with care.

Rendering synthetic datasets
However, what if we have no images to train on, at all? A common solution in computer
vision is the use of synthetic datasets. In the following subsection, we will explain what
synthetic images are, how they can be generated, and what their limitations are.

Overview
Let's first clarify what is meant by synthetic images, and why they are so often used in
computer vision.

Rise of 3D databases
As mentioned in the introduction of this section on data scarcity, the complete lack of
training images is not that uncommon a situation, especially in industry. Gathering
hundreds of images for each new element to recognize is costly, and sometimes completely
impractical (for instance, when the target objects are not produced yet or are only available
at some remote location).
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However, for industrial applications and others, it is increasingly common to have access to
3D models of the target objects or scenes (such as 3D computer-aided design (CAD)
blueprints or 3D scenes captured with depth sensors). Large datasets of 3D models have
even multiplied on the web. With the coincidental development of computer graphics, this
led more and more experts to use such 3D databases to render synthetic images on which to
train their recognition models.

Benefits of synthetic data
Synthetic images are thus images generated by computer graphics libraries from 3D
models. Thanks to the lucrative entertainment industry, computer graphics have indeed
come a long way, and rendering engines can nowadays generate highly realistic images
from 3D models (such as for video games, 3D animated movies, and special effects). It did
not take long for scientists to see the potential for computer vision.

Given some detailed 3D models of the target objects/scenes, it is possible with modern 3D
engines to render huge datasets of pseudo-realistic images. With proper scripting, you can,
for instance, render images of target objects from every angle, at various distances, with
different lighting conditions or backgrounds, and so on. Using various rendering methods,
it is even possible to simulate different types of cameras and sensors (for instance, depth
sensors such as the Microsoft Kinect or Occipital Structure sensors).

Having full control over the scene/image content, you can also easily obtain all kinds of
ground truth labels for each synthetic image (such as precise 3D positions of the rendered
models or object masks). For example, targeting driving scenarios, a team of researchers
from the Universitat Autònoma de Barcelona built virtual replicas of city environments and
used them to render multiple datasets of urban scenes, named SYNTHIA (http:/ /synthia-
dataset.net). This dataset is similar to Cityscapes (https:/ /www. cityscapes- dataset. com),
though larger.

Another team from the Technical University of Darmstadt and Intel Labs successfully
demonstrated self-driving models trained on images taken from the realistic looking video
game Grand Theft Auto V (GTA 5) (https:/ /download. visinf. tu-darmstadt. de/ data/
from_games).
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These three datasets are presented in Figure 7-5:

Figure 7-5: Samples from the Cityscapes, SYNTHIA, and Playing for Data datasets (links to the datasets are provided in the section). Images and their class labels are superposed

Besides the generation of static datasets, 3D models and game engines can also be used to
create interactive simulation environments. After all, simulation-based learning is commonly
used to teach humans complex skills, for instance, when it would be too dangerous or
complicated to learn in real conditions (for instance, simulating zero gravity environments
to teach astronauts how to perform some tasks once in space, and building game-based
platforms to help surgeons learning on virtual patients). If it works for humans, why not
machines? Companies and research labs have been developing a multitude of simulation
frameworks covering various applications (robotics, autonomous driving, surveillance, and
so on).

In these virtual environments, people can train and test their models. At each time step, the
models receive some visual inputs from the environments, which they can use to take
further action, affecting the simulation, and so on (this kind of interactive training is
actually central to reinforcement learning as mentioned in Chapter 1, Computer Vision and
Neural Networks).

Synthetic datasets and virtual environments are used to compensate for the lack of real
training data or to avoid the consequences of directly applying immature solutions to
complex or dangerous situations.

Generating synthetic images from 3D models
Computer graphics is a vast and fascinating domain by itself. In the following paragraphs,
we will simply point out some useful tools and ready-to-use frameworks for those in need
of rendering data for their applications.
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Rendering from 3D models
Generating images from 3D models is a complex, multi-step process. Most 3D models are
represented by a mesh, a set of small faces (usually triangles) delimited by vertices (that is,
points in the 3D space) representing the model's surface. Some models also contain some
texture or color information, indicating which color each vertex or small surface should be.
Finally, models can be placed into a larger 3D scene (translated/rotated). Given a virtual
camera defined by its intrinsic parameters (such as its focal length and principal point) and
its own pose in the 3D scene, the task is to render what the camera sees of the scene. This
procedure is presented in a simplified manner in the following Figure 7-6:

Figure 7-6: Simplistic representation of a 3D rendering pipeline (3D models are from the LineMOD dataset—http://campar.in.tum.de/Main/StefanHinterstoisser)

Converting a 3D scene into a 2D image thus implies multiple transformations, projecting
the faces of each model from 3D coordinates relative to the object to coordinates relative to
the whole scene (world coordinates), then, relative to the camera (camera coordinates), and
finally to 2D coordinates relative to the image space (image coordinates). All these
projections can be expressed as direct matrix multiplications, but constitute (alas) only a
small part of the rendering process. Surface colors should also be properly interpolated,
visibility should be respected (elements occluded by others should not be drawn), realistic
light effects should be applied (for instance, illumination, reflection, and refraction), and so
on.

Operations are numerous and computationally heavy. Thankfully for us, GPUs were
originally built to efficiently perform them, and frameworks such as OpenGL (https:/ /www.
opengl.org) have been developed to help interface with the GPUs for computer graphics
(for instance, to load vertices/faces in the GPUs as buffers, or to define programs named
shaders to specify how to project and color scenes) and streamline some of the process.
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Most of the modern computer languages offer libraries built on top of OpenGL, such as
PyOpenGL (http:/ /pyopengl. sourceforge. net) or the object-oriented vispy (http:/ /
vispy.org) for Python. Applications such as Blender (https:/ /www. blender. org) provide
graphical interfaces to also build and render 3D scenes. While it requires some effort to
master all these tools, they are extremely versatile and can be immensely helpful to render
any kind of synthetic data.

However, it is good to keep in mind that, as we previously mentioned, labs and companies
have been sharing many higher-level frameworks to render synthetic datasets specifically
for machine learning applications. For example, Michael Gschwandtner and Roland Kwitt
from the University of Salzburg developed BlenSor (https:/ / www.blensor. org), a Blender-
based application to simulate all kinds of sensors (BlenSor: blender sensor simulation toolbox,
Springer, 2011); more recently, Simon Brodeur and a group of researchers from various
backgrounds shared the HoME-Platform, simulating a variety of indoor environments for
intelligent systems (HoME: A household multimodal environment, ArXiv, 2017).

When manually setting up a complete rendering pipeline or using a specific simulation
system, in both cases, the end goal is to render a large amount of training data with ground
truths and enough variation (viewpoints, lighting conditions, textures, and more).

To better illustrate these notions, a complete notebook is dedicated to
rendering synthetic datasets from 3D models, briefly covering concepts
such as 3D meshes, shaders, and view matrices. A simple renderer is
implemented using vispy.

Post-processing synthetic images
While 3D models of target objects are often available in industrial contexts, it is rare to have
a 3D representation of the environments they will be found in (for instance, a 3D model of
the industrial plant). The 3D objects/scenes then appear isolated, with no proper
background. But, like any other visual content, if models are not trained to deal with
background/clutter, they won't be able to perform properly once confronted with real
images. Therefore, it is common for researchers to post-process synthetic images, for
instance, to merge them with relevant background pictures (replacing the blank
background with pixel values from images of related environments).

While some augmentation operations could be taken care of by the rendering pipeline (such
as brightness changes or motion blur), other 2D transformations are still commonly applied
to synthetic data during training. This additional post-processing is once again done to
reduce the risk of overfitting and to increase the robustness of the models.
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In May 2019, TensorFlow Graphics was released. This module provides a
computer graphics pipeline to generate images from 3D models. Because
this rendering pipeline is composed of novel differentiable operations, it
can be tightly combined with—or integrated into—NNs (these graphics
operations are differentiable, so the training loss can be backpropagated
through them, like any other NN layer). With more and more features
being added to TensorFlow Graphics (such as 3D visualization add-ons
for TensorBoard and additional rendering options), it will certainly
become a central component of solutions dealing with 3D applications or
applications relying on synthetic training data. More information, as well
as detailed tutorials, can be found in the related GitHub repository
(https:/ /github. com/ tensorflow/ graphics).

Problem – realism gap
Though rendering synthetic images has enabled a variety of computer vision applications,
it is, however, not the perfect remedy for data scarcity (or at least not yet). While computer
graphics frameworks can nowadays render hyper-realistic images, they need detailed 3D
models for that (with precise surfaces and high-quality texture information). Gathering the
data to build such models is as expensive as—if not more than—directly building a dataset
of real images for the target objects.

Because 3D models sometimes have simplified geometries or lack texture-related
information, realistic synthetic datasets are not that common. This realism gap between the 
rendered training data and the real target images harms the performance of the models. The
visual cues they have learned to rely on while training on synthetic data may not appear in
real images (which may have differently saturated colors, more complex textures or
surfaces, and so on).

Even when the 3D models are properly depicting the original objects, it
often happens that the appearance of these objects changes over time (for
instance, from wear and tear).

Currently, a lot of effort is being devoted to tackling the realism gap for computer vision.
While some experts are working on building more realistic 3D databases or developing
more advanced simulation tools, others are coming up with new machine learning models
that are able to transfer the knowledge they acquired from synthetic environments to real
situations. The latter approach will be the topic of this chapter's final subsection.
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Leveraging domain adaptation and generative
models (VAEs and GANs)
Domain adaptation methods were briefly mentioned in Chapter 4, Influential Classification
Tools, among transfer learning strategies. Their goal is to transpose the knowledge acquired
by models from one source domain (that is, one data distribution) to another target domain.
Resulting models should be able to properly recognize samples from the new distribution,
even if they were not directly trained on it. This fits scenarios when training samples from
the target domain are unavailable, but other related datasets are considered as training
substitutes.

Suppose we want to train a model to classify household tools in real scenes, but we only
have access to uncluttered product pictures provided by the manufacturers. Without
domain adaptation, models trained on these advertising pictures will not perform properly
on target images with actual clutter, poor lighting, and other discrepancies.

Training recognition models on synthetic data so that they can be applied to real images
has also become a common application for domain adaptation methods. Indeed, synthetic
images and real pictures of the same semantic content can be considered as two different
data distributions, that is, two domains with different levels of detail, noise, and so on.

In this section, we will consider the following two different flavors of approaches:

Domain adaptation methods that aim to train models so that they perform
indifferently on the source and target domains
Methods for adapting the training images to make them more similar to the
target images

Training models to be robust to domain changes
A first approach to domain adaptation is to encourage the models to focus on robust
features, which can be found in both the source and target domains. Multiple solutions
following this approach have been proposed, contingent on the availability of target data
during training.
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Supervised domain adaptation
Sometimes, you may be lucky enough to have access to some pictures from the target
domain and relevant annotations, besides a larger source dataset (for instance, of synthetic
images). This is typically the case in industry, where companies have to find a compromise
between the high cost of gathering enough target images to train recognition models, and
the performance drop they would experience if models are taught on synthetic data only.

Thankfully, multiple studies have demonstrated that adding even a small number of target
samples to training sets can boost the final performance of the algorithms. The following
two main reasons are usually put forward:

Even if scarce, this provides the models with some information on the target
domain. To minimize their training loss over all samples, the networks will have
to learn how to process this handful of added images (this can even be
accentuated by weighing the loss more for these images).
Since source and target distributions are, by definition, different, mixed datasets
display greater visual variability. As previously explained, models will have to
learn more robust features, which can be beneficial once applied to target images
only (for example, models become better prepared to deal with varied data, and
thus better prepared for whatever the target image distribution is).

A direct parallel can also be made with the transfer learning methods we explored in
Chapter 4, Influential Classification Tools (training models first on a large source dataset, and
then fine-tuning them on the smaller target training set). As mentioned then, the closer the
source data is to the target domain, the more efficient such a training scheme
becomes—and the other way around (in a Jupyter Notebook, we highlight these
limitations, training our segmentation model for self-driving cars on synthetic images too
far removed from the target distribution).

Unsupervised domain adaptation
When preparing training datasets, gathering images is often not the main problem. But
properly annotating these images is, as it is a tedious and therefore costly procedure. Plenty
of domain adaptation methods are thus targeting these scenarios when only source images,
their corresponding annotations, and target images are available. With no ground truth,
these target samples cannot be directly used to train the models in the usual supervised
manner. Instead, researchers have been exploring unsupervised schemes to take advantage
of the visual information these images still provide of the target domain.
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For example, works such as Learning Transferable Features with Deep Adaptation Networks, by
Mingsheng Long et al. (from Tsinghua University, China) are adding constraints to some
layers of the models, so that the feature maps they generate have the same distribution,
whichever domain the input images belong to. The training scheme proposed by this flavor
of approach can be oversimplified as the following:

For several iterations, train the model on source batches in a supervised manner.1.
Once in a while, feed the training set to the model and compute the distribution2.
(for instance, mean and variance) of the feature maps generated by the layers we
want to adapt.
Similarly, feed the set of target images to the model and compute the distribution3.
of the resulting feature maps.
Optimize each layer to reduce the distance between the two distributions.4.
Repeat the whole process until you achieve convergence.5.

Without the need for target labels, these solutions force the networks to learn features that
can transfer to both domains while the networks are trained on the source data (the
constraints are usually added to the last convolutional layers in charge of feature extraction,
as the first ones are often generic enough already).

Other methods are taking into account an implicit label always available in these training
scenarios—the domain each image belongs to (that is, source or target). This information can
be used to train a supervised binary classifier—given an image or feature volume, its task is
to predict whether it comes from the source or target domain. This secondary model can be
trained along with the main one, to guide it toward extracting features that could belong to
any of the two domains.

For example, in their Domain-Adversarial Neural Networks (DANN) paper (published in
JMLR, 2016), Hana Ajakan, Yaroslav Ganin, et al. (from Skoltech) proposed adding a
secondary head to the models to train (right after their feature extraction layers) whose task
is to identify the domain of the input data (binary classification). The training then proceeds
as follows (once again, we simplify):

Generate a batch of source images and their task-related ground truths to train1.
the main network on it (normal feed-forwarding and backpropagation through
the main branch).
Generate a batch mixing source and target images with their domain labels and2.
feed it forward through the feature extractor and the secondary branch, which
tries to predict the correct domain for each input (source or target).
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Backpropagate the domain classification loss normally through the layers of the3.
secondary branch, but then reverse the gradient before backpropagating through
the feature extractor.
Repeat the whole process until convergence, that is, until the main network can4.
perform its task as expected, whereas the domain classification branch can no
longer properly predict the domains.

This training procedure is illustrated in Figure 7-7:

Figure 7-7: DANN concept applied to the training of a classifier

With proper control of the data flow or weighting of the main loss, the
three steps can be executed at once in a single iteration. This is
demonstrated in the Jupyter Notebook we dedicate to this method.

This scheme got a lot of attention for its cleverness. By reversing the gradient from the
domain classification loss (that is, multiplying it by -1) before propagating it through the
feature extractor, its layers will learn to maximize this loss, not to minimize it. This method is
called adversarial because the secondary head will keep trying to properly predict the
domains, while the upstream feature extractor will learn to confuse it. Concretely, this leads
the feature extractor to learn features that cannot be used to discriminate the domains of the
input images but are useful to the network's main task (since the normal training of the
main head is done in parallel). After training, the domain classification head can simply be
discarded.
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Note that with TensorFlow 2, it is quite straightforward to manipulate the gradients of
specific operations. This can be done by applying the @tf.custom_gradient decorator
(refer to the documentation at https:/ / www. tensorflow. org/ api_docs/ python/ tf/
custom_gradient) to functions and by providing the custom gradient operations. Doing so,
we can implement the following operation for DANN, to be called after the feature
extractor and before the domain classification layers in order to reverse the gradient at that
point during backpropagation:

# This decorator specifies the method has a custom gradient. Along with its
normal output, the method should return the function to compute its
gradient:
@tf.custom_gradient
def reverse_gradient(x): # Flip the gradient's sign.
    y = tf.identity(x) # the value of the tensor itself isn't changed
    return y, lambda dy: tf.math.negative(dy) # output + gradient method

Since DANN, a multitude of other domain adaptation methods have been released (for
instance, ADDA and CyCaDa), following similar adversarial schemes.

In some cases, annotations for the target images are available, but not with
the desired density (for instance, with only image-level class labels when
the target task is pixel-level semantic segmentation). Auto-labeling
methods have been proposed for such scenarios. For example, guided by
the sparse labels, the models trained on source data are used to predict the
denser labels of the target training images. Then, these source labels are
added to the training set to refine the models. This process is repeated
iteratively until the target labels look correct enough and the models
trained on the mixed data have converged.

Domain randomization
Finally, it may happen that no target data is available at all for training (no image, no
annotation). The performance of the models then relies entirely on the relevance of the 
source dataset (for instance, how realistic looking and relevant to the task the rendered
synthetic images are).

https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient
https://www.tensorflow.org/api_docs/python/tf/custom_gradient


Training on Complex and Scarce Datasets Chapter 7

[ 248 ]

Pushing the concept of data augmentation for synthetic images to the extreme, domain
randomization can also be considered. Mostly explored by industrial experts, the idea is to
train models on large data variations (as described in Domain randomization for transferring
deep neural networks from simulation to the real world, IEEE, 2017). For example, if we only
have access to 3D models of the objects we want the networks to recognize, but we do not
know in what kind of scenes these objects may appear, we could use a 3D simulation
engine to generate images with a significant number of random backgrounds, lights, scene
layouts, and so on. The claim is that with enough variability in the simulation, real data
may appear just as another variation to the models. As long as the target domain somehow
overlaps the randomized training one, the networks would not be completely clueless after
training.

Obviously, we cannot expect such NNs to perform as well as any trained
on target samples, but domain randomization is a fair solution to
desperate situations.

Generating larger or more realistic datasets with VAEs
and GANs
The second main type of domain adaptation methods we will cover in this chapter will give
us the opportunity to introduce what many call the most interesting development in
machine learning these past years—generative models, and, more precisely VAEs and
GANs. Highly popular since they were proposed, these models have been incorporated into
a large variety of solutions. Therefore, we will confine ourselves here to a generic
introduction, before presenting how these models are applied to dataset generation and
domain adaptation.

Discriminative versus generative models
So far, most of the models we have been studying are discriminative. Given an input, x,
they learn the proper parameters, W, in order to return/discriminate the correct label, y, out
of those considered (for instance, x may be an input image and y may be the image class
label). A discriminative model can be interpreted as a function f(x ; W) = y. They can also be
interpreted as models trying to learn the conditional probability distribution, p(y|x) (meaning
the probability of y given x; for instance, given a specific picture x, what is the probability that
its label is y = "cat picture"?).
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There is a second category of models we have yet to introduce—generative models. Given
some samples, x, drawn from an unknown probability distribution, p(x), generative models
are trying to model this distribution. For example, given some images, x, representing cats, a
generative model will attempt to infer the data distribution (what makes these cat pictures,
out of all possible pixel combinations) in order to generate new cat images that could
belong to the same set as x.

In other words, a discriminative model learns to recognize a picture based on specific
features (for instance, it is probably a cat picture because it depicts something with
whiskers, paws, and a tail). A generative model learns to sample new images from the
input domain, reproducing its typical features (for instance, here is a plausible new cat
picture, obtained by generating and combining typical cat features).

As functions, generative CNNs need an input they can process into a new picture.
Oftentimes, they are conditioned by a noise vector, that is, a tensor, z, sampled from a random
distribution (such as , meaning z is randomly sampled from a normal distribution
of mean  and standard deviation ). For each random input they receive, the
models provide a new image from the distribution they learned to model. When available,
generative networks can also be conditioned by the labels, y. In such cases, they have to
model the conditional distribution, p(x|y) (for instance, considering the label y = "cat", what
is the probability of sampling the specific image x)?

According to the majority of experts, generative models hold the key to
the next stage of machine learning. To be able to generate a large and
varied amount of new data despite their limited number of parameters,
networks have to distill the dataset to uncover its structure and key
features. They have to understand the data.

VAEs
While auto-encoders can also learn some aspects of a data distribution, their goal is only to
reconstruct encoded samples, that is, to discriminate the original image out of all possible
pixel combinations, based on the encoded features. Standard auto-encoders are not meant
to generate new samples. If we randomly sample a code vector from their latent space,
chances are high that we will obtain a gibberish image out of their decoder. This is because
their latent space is unconstrained and typically not continuous (that is, there are usually
large regions in the latent space that are not corresponding to any valid image).
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Variational auto-encoders (VAEs) are particular auto-encoders designed to have
continuous latent space, and they are therefore used as generative models. Instead of
directly extracting the code corresponding to an image, x, the encoder of a VAE is tasked to
provide a simplified estimation of the distribution in the latent space that the image belongs
to.

Typically, the encoder is built to return two vectors, respectively representing the mean,
, and the standard deviation, , of a multivariate normal distribution (for an n-

dimensional latent space). Figuratively speaking, the mean represents the most likely
position of the image in the latent space, and the standard deviation controls the size of the
circular area, around that position, where the image could also be. From this distribution
defined by the encoder, a random code, z, is picked and passed to the decoder. The
decoder's task is then to recover image x based on z. Since z can slightly vary for the same
image, the decoder has to learn to deal with these variations to return the input image.

To illustrate the differences between them, auto-encoders and VAEs are depicted side by
side in Figure 7-8:

Figure 7-8: Comparison of standard auto-encoders and variational ones

Gradients cannot flow back through random sampling operations. To be
able to backpropagate the loss through the encoder despite the sampling
of z, a reparameterization trick is used. Instead of directly sampling

, this operation is approximated by , with . This
way, z can be obtained through a derivable operation, considering  as a
random vector passed as an additional input to the model.
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During training, a loss—usually the mean-squared error (MSE)—measures how similar the
output image is to the input one, as we do for standard auto-encoders. However, another
loss is added to VAE models, to make sure the distribution estimated by their encoder is
well-defined. Without this constraint, the VAEs could otherwise end up behaving like
normal auto-encoders, returning  null and  as the images' code. This second loss is based
on the Kullback–Leibler divergence (named after its creators and usually contracted to KL
divergence). The KL divergence measures the difference between two probability
distributions. It is adapted into a loss, to ensure that the distributions defined by the
encoder are close enough to the standard normal distribution, :

With this reparameterization trick and KL divergence, auto-encoders become powerful
generative models. Once the models are trained, their encoders can be discarded, and their
decoders can be directly used to generate new images, given random vectors, , as
inputs. For example, Figure 7-9 shows a grid of results for a simple convolutional VAE with
a latent space of dimension n = 2, trained to generate MNIST-like images (additional details
and source code are available as a Jupyter Notebook):

Figure 7-9: Grid of images generated by a simple VAE trained to create MNIST-like results
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To generate this grid, the different vectors, z, are not randomly picked, but are sampled to
homogeneously cover part of the 2D latent space, hence the grid figure that shows the
output images for z varying from (-1.5, -1.5) to (1.5, 1.5). We can thus observe the continuity
of the latent space, with the content of the resulting images varying from one digit to
another.

GANs
First proposed in 2014 by Ian Goodfellow et al. from the University of Montreal, GANs are
certainly the most popular solution for generative tasks.

As their name indicates, GANs use an adversarial scheme so they can be trained in an
unsupervised manner (this scheme inspired the DANN method introduced earlier in this
chapter). Having only a number of images, x, we want to train a generator network to model
p(x), that is, to create new valid images. We thus have no proper ground truth data to
directly compare the new images with (since they are new). Not able to use a typical loss
function, we pit the generator against another network—the discriminator.

The discriminator's task is to evaluate whether an image comes from the original dataset
(real image) or if it was generated by the other network (fake image). Like the domain
discriminating head in DANN, the discriminator is trained in a supervised manner as a
binary classifier using the implicit image labels (real versus fake). Playing against the
discriminator, the generator tries to fool it, generating new images conditioned by noise
vectors, z, so the discriminator believes they are real images (that is, sampled from p(x)).

When the discriminator predicts the binary class of generated images, its results are
backpropagated all the way into the generator. The generator thus learns purely from the
discriminator's feedback. For example, if the discriminator learns to check whether an image
contains whiskers to label it as real (if we want to create cat images), then the generator will
receive this feedback from backpropagation and learn to draw whiskers (even though only
the discriminator was fed with actual cat images!). Figure 7-10 illustrates the concept of
GANs with the generation of handwritten digit images:
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Figure 7-10: GAN representation

GANs were inspired by game theory, and their training can be interpreted as a two-player
zero-sum minimax game. Each phase of the game (that is, each training iteration) takes place
as follows:

The generator, G, receives N noise vectors, z, and outputs as many images, xG.1.
These 𝑁 fake images are mixed with N real images, x, picked from the training set.2.
The discriminator, D, is trained on this mixed batch, trying to estimate which3.
images are real and which are fake.
The generator, G, is trained on another batch of N noise vectors, trying to4.
generate images so that D assumes they are real.

Therefore, at each iteration, the discriminator, D (parameterized by PD), tries to maximize
the game reward, V(G, D), while the generator, G (parameterized by PG), tries to minimize
it:

Note that this equation assumes that the label real is 1 and the label fake is 0. The first term
of V(G, D) represents the averaged log probability estimated by the discriminator, D, that
the images, x, are real (D should return 1 for each). Its second term represents the averaged
log probability estimated by D that the generator's outputs are fake (D should return 0 for
each). Therefore, this reward, V(G, D), is used to train the discriminator, D, as a
classification metric that D has to maximize (although in practice, people rather train the
network to minimize -V(G, D), out of habit for decreasing losses).
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Theoretically, V(G, D) should also be used to train the generator, G, as a value to minimize
this time. However, the gradient of its second term would vanish toward 0 if D becomes too
confident (and the derivative of the first term with respect to PG is always null, since PG

does not play any role in it). This vanishing gradient can be avoided with a small
mathematical change, using instead the following loss to train G:

According to game theory, the outcome of this minimax game is an equilibrium between G
and D (called Nash equilibrium, after the mathematician John Forbes Nash Jr, who defined
it). Though hard to achieve in practice with GANs, the training should end with D unable
to differentiate real from fake (that is, D(x) = 1/2 and D(G(z)) = 1/2 for all samples) and with G
modeling the target distribution, p(x).

Though difficult to train, GANs can lead to highly realistic results and are therefore
commonly used to generate new data samples (GANs can be applied to any data modality:
image, video, speech, text, and more.)

While VAEs are easier to train, GANs usually return crisper results. Using
the MSE to evaluate the generated images, VAE results can be slightly
blurry, as the models tend to return averaged images to minimize this
loss. Generators in GANs cannot cheat this way, as the discriminators
would easily spot blurry images as fake. Both VAEs and GANs can be
used to generate larger training datasets for image-level recognition (for
instance, preparing one GAN to create new dog images and another to
create new cat images, to train a dog versus cat classifier on a larger
dataset).

Both VAEs and GANs are implemented in the Jupyter Notebooks
provided.

Augmenting datasets with conditional GANs
Another great advantage GANs have is that they can be conditioned by any kind of data.
Conditional GANs (cGANs) can be trained to model the conditional distribution, p(x|y), that
is, to generate images conditioned by a set of input values, y (refer to the introduction to
generative models). The conditional input, y, can be an image, a categorical or continuous
label, a noise vector, and more, or any combination of those.
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In conditional GANs, the discriminator is edited to receive both an image, x (real or fake),
and its corresponding conditional variable, y, as a paired input (that is, D(x, y)). Though its
output is still a value between 0 and 1 measuring how real the input seems, its task is
slightly changed. To be considered as real, an image should not only look as if drawn from
the training dataset; it should also correspond to its paired variable.

Imagine, for instance, that we want to train a generator, G, to create images of handwritten
digits. Such a generator would be much more useful if, instead of outputting images of
random digits, it could be conditioned to output images of requested ones (that is, draw an
image whose y = 3, with y the categorical digit label). If the discriminator is not given y, the
generator would learn to generate realistic images, but with no certainty that these images
would be depicting the desired digits (for instance, we could receive from G a realistic
image of a 5 instead of a 3). Giving the conditioning information to D, this network would
immediately spot a fake image that does not correspond to its y, forcing G to effectively
model p(x|y).

The Pix2Pix model by Phillip Isola and others from Berkeley AI Research is a famous
image-to-image conditional GAN (that is, with y being an image), demonstrated on several
tasks, such as converting hand-drawn sketches into pictures, semantic labels into actual
pictures, and more (Image-to-image translation with conditional adversarial networks, IEEE,
2017). While Pix2Pix works best in supervised contexts, when the target images were made
available to add an MSE loss to the GAN objective, more recent solutions removed this
constraint. This is, for instance, the case of CycleGAN, by Jun-Yan Zhu et al. from Berkeley
AI Research (published by IEEE in 2017, in collaboration with the Pix2Pix authors) or
PixelDA by Konstantinos Bousmalis and colleagues from Google Brain (Unsupervised pixel-
level domain adaptation with generative adversarial networks, IEEE, 2017).

Like other recent conditional GANs, PixelDA can be used as a domain adaptation method,
to map training images from the source domain to the target domain. For example, the
PixelDA generator can be applied to generating realistic-looking versions of synthetic
images, learning from a small set of unlabeled real images. It can thus be used to augment
synthetic datasets so that the models trained on them do not suffer as much from the
realism gap.

Though mostly known for their artistic applications (GAN-generated portraits are already
being exhibited in many art galleries), generative models are powerful tools that, in the
long term, could become central to the understanding of complex datasets. But nowadays,
they are already being used by companies to train more robust recognition models despite
scarce training data.
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Summary
Although the exponential increase in computational power and the availability of larger
datasets have led to the deep learning era, this certainly does not mean that best practices in
data science should be ignored or that relevant datasets will be easily available for all
applications.

In this chapter, we took a deep dive into the tf.data API, learning how to optimize the
data flow. We then covered different, yet compatible, solutions to tackle the problem of
data scarcity: data augmentation, synthetic data generation, and domain adaptation. The
latter solution gave us the opportunity to present VAEs and GANs, which are powerful
generative models.

The importance of well-defined input pipelines will be highlighted in the next chapter, as
we will apply NNs to data of higher dimensionality: image sequences and videos.

Questions
Given a tensor, a = [1, 2, 3], and another tensor, b = [4, 5, 6], how do1.
you build a tf.data pipeline that would output each value separately, from 1 to
6?
According to the documentation of tf.data.Options, how do you make sure2.
that a dataset always returns samples in the same order, run after run?
Which domain adaptation methods that we introduced can be used when no3.
target annotations are available for training?
What role does the discriminator play in GANs?4.

Further reading
Learn OpenGL (https:/ /www. packtpub. com/ game- development/ learn- opengl),
by Frahaan Hussain: For readers interested in computer graphics and eager to
learn how to use OpenCV, this book is a nice place to start.
Hands-On Artificial Intelligence for Beginners (https:/ /www. packtpub. com/big-
data-and- business- intelligence/ hands- artificial- intelligence-
beginners), by Patrick D. Smith: Though written for TensorFlow 1, this book
dedicates a complete chapter to generative networks.
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8
Video and Recurrent Neural

Networks
So far in this book, we have only considered still images. However, in this chapter, we will
introduce the techniques that are applied to video analysis. From self-driving cars to video
streaming websites, computer vision techniques have been developed to enable sequences
of images to be processed.

We will introduce a new type of neural network—recurrent neural networks (RNNs),
which are designed specifically for sequential inputs such as video. As a practical
application, we will combine them with convolutional neural networks (CNNs) to detect
actions included in short video clips.

The following topics will be covered in this chapter:

Introduction to RNNs
Inner workings of long short-term memory networks
Applications of computer vision models to videos

Technical requirements
Commented code in the form of Jupyter notebooks is available in this book's GitHub
repository at https:/ /github. com/ PacktPublishing/ Hands- On-Computer- Vision- with-
TensorFlow-2/tree/ master/ Chapter08.
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Introducing RNNs
RNNs are a type of neural network that are suited for sequential (or recurrent) data.
Examples of sequential data include sentences (sequences of words), time series (sequences
of stock prices, for instance), or videos (sequences of frames). They qualify as recurrent data
as each time step is related to the previous ones.

While RNNs were originally developed for time series analysis and natural language
processing tasks, they are now applied to various computer vision tasks.

We will first introduce the basic concepts behind RNNs, before trying to get a general
understanding of how they work. We will then describe how their weights can be learned.

Basic formalism
To introduce RNNs, we will use the example of video recognition. A video is composed of
N frames. The naive method to classify a video would be to apply a CNN to each frame,
and then take the average of the outputs.

While this would provide decent results, it does not reflect the fact that some parts of the
video are more important than others. Moreover, the important parts do not always take
more frames than the meaningless ones. The risk of averaging the output would be to lose
important information.

To circumvent this problem, an RNN is applied to all the frames of the video, one after the
other, from the first one to the last one. The main attribute of RNNs is adequately
combining features from all the frames in order to generate meaningful results.

We do not apply the RNN directly to the raw pixels of the frame. As
described later in the chapter, we first use a CNN to generate a feature
volume (a stack of feature maps). The concept of feature volume was
detailed in Chapter 3, Modern Neural Networks. As a reminder, a feature
volume is the output of a CNN and usually represents the input with a
smaller dimensionality.

To do so, RNNs introduce a new concept called the state. State can be pictured as the
memory of the RNN. In practice, state is a float matrix. The state starts as a zero matrix and
is updated with each frame of the video. At the end of the process, the final state is used to
generate the output of the RNN.
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The main component of an RNN is the RNN cell, which we will apply to every frame. A
cell receives as inputs both the current frame and the previous state. For a video composed of
N frames, an unfolded representation of a simple recurrent network is depicted in Figure
8-1:

Figure 8-1: Basic RNN cell

In detail, we start with a null state (h<0>). As a first step, the cell combines the current state
(h<0>) with the current frame (frame1) to generate a new state (h<1>). Then, the same process is
applied to the next frames. At the end of this process, we end up with the final state (h<n>).

Note the vocabulary here—RNN refers to the component that accepts an
image and returns a final output. An RNN cell refers to the sub-component
that combines a frame as well as a current state, and returns the next state.

In practice, the cell combines the current state and the frame to generate a new state. This
combination happens according to the following formula:

In the formula, the following applies:

b is the bias.
Wrec is the recurrent weight matrix, and Winput is the weight matrix.
x<t> is the input.
h<t-1> is the current state, and h<t> is the new state.

The hidden state is not used as is. A weight matrix, V, is used to compute the final
prediction:
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Throughout this chapter, we will make use of chevrons (< >) to denote
temporal information. Other sources may use different conventions. Note,
however, that the y with a hat ( ) commonly represents the prediction of a
neural network, while y represents the ground truth.

When applied to videos, RNNs can be used to classify the whole video or every single
frame. In the former case, for instance, when predicting whether a video is violent, only the
final prediction, , will be used. In the latter case, for instance, to detect which frames
may contain nudity, predictions for each time step will be used.

General understanding of RNNs
Before we detail how the network learns the weights of Winput, Wrec, and V, let's try to get a
broad understanding of how a basic RNN works. The general idea is that Winput will
influence the results if some of the features from the input make it into the hidden state,
and Wrec will influence the results if some features stay in the hidden state.

Let's use specific examples—classifying a violent video and a dance video.

As a gunshot can be quite sudden, it would represent only a few frames among all the
frames of the video. Ideally, the network will learn Winput, so that when x<t> contains the
information of a gunshot, the concept of violent video would be added to the state.
Moreover, Wrec (defined in the previous equation) must be learned in a way that prevents
the concept of violent from disappearing from the state. This way, even if the gunshot
appears only in the first few frames, the video would still be classified as violent (see Figure
8-2).

However, to classify dance videos, we would adopt another behavior. Ideally, the network
would learn Winput so that, for example, when x<t> contains people who appear to be dancing,
the concept of dance would only be lightly incremented in the state (see Figure 8-2):
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Figure 8-2: Simplified representation of how the hidden state should evolve, depending on the video content

Indeed, if the input is a sport video, we would not want a single frame mistakenly classified
as dancing people to change our state to dancing. As a dancing video is mostly made of
frames containing dancing people, by incrementing the state little by little, we would avoid
misclassification.

Moreover, Wrec must be learned in order to make dance gradually disappear from the state.
This way, if the introduction of the video is about dance, but the whole video is not, it
would not be classified as such.

Learning RNN weights
In practice, the state of the network is much more complex than a vector containing a
weight for each class, as in the previous example. The weights of Winput, Wrec, and V cannot
be engineered by hand. Thankfully, they can be learned through backpropagation. This
technique was detailed in Chapter 1, Computer Vision and Neural Networks. The general idea
is to learn the weights by correcting them based on the errors that the network makes.
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Backpropagation through time
For RNNs, however, we not only backpropagate the error through the depth of the
network, but also through time. First of all, we compute the total loss by summing the
individual loss (L) over all the time steps:

This means that we can compute the gradient for each time step separately. To greatly
simplify the calculations, we will assume that tanh = identity (that is, we assume that there is
no activation function). For instance, at t = 4, we will compute the gradient by applying the
chain rule:

Here, we stumble upon a complexity—the third term (in bold) on the right-hand side of
the equation cannot be easily derived. Indeed, to take the derivative of h<4> with respect to
Wrec, all other terms must not depend on Wrec. However, h<4> also depends on h<3>. And h<3>

depends on Wrec, since h<3>= tanh (Wrec h
<2> + Winput x

<3>+b), and so on and so forth until we reach
h<0>, which is entirely composed of zeros.

To properly derive this term, we apply the total derivative formula on this partial
derivative:

It might seem weird that a term is equal to itself plus other (non-null)
terms. However, since we are taking the total derivative of a partial
derivative, we need to take into account all the terms in order to generate
the gradient.

By noticing that all the other terms are remaining constant, we obtain the following
equations:
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Therefore, the partial derivative presented before can be expressed as follows:

In conclusion, we notice that the gradient will depend on all the previous states as well as
Wrec. This concept is called backpropagation through time (BPTT). Since the latest state 
depends on all the states before it, it only makes sense to consider them to compute the
error. As we sum the gradient of each time step to compute the total gradient, and since, for
each time step, we have to go back to the first time step to compute the gradient, a large
amount of computation is implied. For this reason, RNNs are notoriously slow to train.

Moreover, we can generalize the previous formula to show that depends on Wrec to the
power of (t-2). This is very problematic when t is large. Indeed, if the terms of Wrec are
below one, with the high exponent, they become very small. Worse, if the terms are above
one, the gradient tends toward infinity. These phenomena are called gradient vanishing
and gradient explosion, respectively (they were previously described in Chapter 4,
Influential Classification Tools). Thankfully, workarounds exist to avoid this problem.

Truncated backpropagation
To circumvent the long training time, it is possible to compute the gradient every k1 time
step instead of every step. This divides the number of gradient operations by k1, making the
training of the network faster.

Instead of backpropagating throughout all the time steps, we can also limit the propagation
to k2 steps in the past. This effectively limits the gradient vanishing, since the gradient will
depend on Wk2 at most. This also limits the computations that are necessary to compute the
gradient. However, the network will be less likely to learn long-term temporal relations.

The combination of those two techniques is called truncated backpropagation, with its two 
parameters commonly referred to as k1 and k2. They must be tuned to ensure a good trade-
off between training speed and model performance.

This technique—while powerful—remains a workaround for a fundamental RNN problem.
In the next section, we will introduce a change of architecture that can be used to solve this
issue in its entirety.
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Long short-term memory cells
As we saw previously, regular RNNs suffer from gradient explosion. As such, it can
sometimes be hard to teach them long-term relations in sequences of data. Moreover, they
store information in a single-state matrix. For instance, if a gunshot happens at the very
beginning of a very long video, it will be unlikely that the hidden state of the RNNs will not
be overridden by noise by the time it reaches the end of the video. The video might not be
classified as violent.

To circumvent those two problems, Sepp Hochreiter and Jürgen Schmidhuber proposed, in
their paper (Long Short-Term Memory, Neural Computation, 1997), a variant of the basic
RNN—the Long Short-Term Memory (LSTM) cell. This has improved markedly over the
years, with many variants being introduced. In this section, we will give an overview of its
inner workings, and we will show why gradient vanishing is less of an issue. 

LSTM general principles
Before we detail the mathematics behind the LSTM cell, let's try to get a general
understanding of how it works. To do so, we will use the example of a live classification
system that is applied to the Olympic Games. The system has to detect, for every frame,
which sport is being played during a long video from the Olympics.

If the network sees people standing in line, can it infer what sport it is? Is it soccer players
singing the anthem, or is it athletes preparing to run a 100-meter race? Without information
about what happened in the frames just prior to this, the prediction will not be accurate.
The basic RNN architecture we presented earlier would be able to store this information in
the hidden state. However, if the sports are alternating one after the other, it would be
much harder. Indeed, the state is used to generate the current predictions. The basic RNN is
unable to store information that it will not use immediately.

The LSTM architecture solves this by storing a memory matrix, which is called the cell state
and is referred to as C<t>. At every time step, C<t> contains information about the current
state. But this information will not be used directly to generate the output. Instead, it will be
filtered by a gate.

Note that the LSTM's cell state is different from the simple RNN's state, as
outlined by the following equations. The LSTM's cell state is filtered
before being transformed into the final state.
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Gates are the core idea of LSTM's cell. A gate is a matrix that will be multiplied term by
term to another element in the LSTM. If all the values of the gate are 0, none of the
information from the other element will pass through. On the other hand, if the gate values
are all around 1, all the information of the other element will pass through.

As a reminder, an example of term-by-term multiplication (also called element-wise
multiplication or the Hadamard product) can be depicted as follows:

At each time step, three gate matrices are computed using the current input and the
previous output:

The input gate: Applied to the input to decide which information gets through.
In our example, if the video is showing members of the audience, we would not
want to use this input to generate predictions. The gate would be mostly zeros.
The forget gate: Applied to the cell state to decide which information to forget.
In our example, if the video is showing presenters talking, we would want to
forget about the current sport, as we are probably going to see a new sport next.
The output gate: This will be multiplied by the cell state to decide which
information to output. We might want to keep in the cell state the fact that the
previous sport was soccer, but this information will not be useful for the current
frame. Outputting this information would perturb the upcoming time steps. By
setting the gate around zero, we would effectively keep this information for later.

In the next section, we will cover how the gates and the candidate state are computed and
demonstrate why LSTMs suffer less from gradient vanishing.

LSTM inner workings
First, let's detail how the gates are computed:
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As detailed in the previous equations, the three gates are computed using the same
principle—by multiplying a weight matrix (W) by the previous output (h<t-1>) and the
current input (x<t>). Notice that the activation function is the sigmoid (σ). As a consequence,
the gate values are always between 0 and 1.

The candidate state ( ) is computed in a similar fashion. However, the activation
function used is a hyperbolic tangent instead of the sigmoid:

Notice that this formula is exactly the same as the one used to compute h<t> in the basic
RNN architecture. However, h<t> was the hidden state while, in this case, we are computing
the candidate cell state. To compute the new cell state, we combine the previous one with
the candidate cell state. Both states are gated by the forget and input gates, respectively:

Finally, the LSTM hidden state (output) will be computed from the cell state as follows:

The simplified representation of the LSTM cell is depicted in Figure 8-3:

Figure 8-3: Simplified representation of the LSTM cell. Gate computation is omitted
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LSTM weights are also computed using backpropagation through time. Due to the
numerous information paths in LSTM cells, gradient computation is even more complex.
However, we can observe that if the terms of the forget gate, f<t>, are close to 1, information
can be passed from one cell state to the other, as shown in the following equation:

For this reason, by initializing the forget gate bias to a vector of ones, we can ensure that the
information backpropagates through numerous time steps. As such, LSTMs suffer less from
gradient vanishing.

This concludes our introduction to RNNs; we can now begin with the hands-on
classification of a video.

Classifying videos
From television to web streaming, the video format is getting more and more popular.
Since the inception of computer vision, researchers have attempted to apply computer
vision to more than one image at a time. While limited by computing power at first, they
more recently have developed powerful techniques for video analysis. In this section, we
will introduce video-related tasks and detail one of them—video classification.

Applying computer vision to video
At 30 frames per second, processing every frame of a video implies analyzing 30 × 60 = 180
frames per minute. This problem was faced really early in computer vision, before the rise
of deep learning. Techniques were then devised to analyze videos efficiently.

The most obvious technique is sampling. We can analyze only one or two frames per
second instead of all the frames. While more efficient, we may lose information if an
important scene appears very briefly, such as in the case of a gunshot, which was
mentioned earlier.
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A more advanced technique is scene extraction. This is particularly popular for analyzing
movies. An algorithm detects when the video is changing from one scene to another. For
instance, if the camera goes from a close-up view to a wide view, we would analyze a frame
from each framing. Even if the close-up is really short and the wide view occurs over many
frames, we would extract only one frame from each shot. Scene extraction can be done by
using fast and efficient algorithms. They process the pixels of images and evaluate the
variation between two consecutive frames. A large variation indicates a scene change.

In addition, all the image-related tasks described in Chapter 1, Computer Vision and Neural
Networks, also apply to video. For instance, super-resolution, segmentation, and style
transfer are commonly targeted at video. However, the temporal aspect of a video creates
new applications in the form of the following video-specific tasks:

Action detection: A variant of video classification, the goal here is to classify
what actions a person is accomplishing. Actions range from running to playing
soccer, but can also be as precise as the kind of dance being performed, or the
musical instrument being played.
Next-frame prediction: Given N consecutive frames, this predicts how frame
N+1 is going to look.
Ultra slow motion: This is also called frame interpolation. The model has to
generate intermediate frames to make slow motion look less jerky.
Object tracking: This was executed historically using classical computer vision
techniques such as descriptors. However, deep learning is now applied to track
objects in videos.

Of these video-specific tasks, we will focus on action detection. In the next section, we will
introduce an action video dataset and cover how to apply an LSTM cell to videos.

Classifying videos with an LSTM
We will make use of the UCF101 dataset (https:/ /www. crcv. ucf.edu/ data/ UCF101. php),
which was put together by K. Soomro et al. (refer to UCF101: A Dataset of 101 Human
Actions Classes From Videos in The Wild, CRCV-TR-12-01, 2012). Here are a few examples
from the dataset:
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Figure 8-4: Example images from the UCF101 dataset

The dataset is composed of 13,320 segments of video. Each segment contains a person
performing one of 101 possible actions.

To classify the video, we will use a two-step process. Indeed, a recurrent network is not fed
the raw pixel images. While it could technically be fed with full images, CNN feature
extractors are used beforehand in order to reduce the dimensionality, and to reduce the
computations done by LSTMs. Therefore, our network architecture can be represented by
Figure 8-5:

Figure 8-5: Combination of a CNN and an RNN to categorize videos. In this simplified example, the sequence length is 3

As stated earlier, backpropagating errors through RNNs is difficult. While we could train
the CNN from scratch, it would take a tremendous amount of time for sub-par results.
Therefore, we use a pretrained network, applying the transfer learning technique that was
introduced in Chapter 4, Influential Classification Tools.
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For the same reason, it is also common practice not to fine-tune the CNN and to keep its
weights untouched, as this does not bring any performance improvement. Since the CNN
will stay unchanged throughout all the epochs of training, a specific frame will always
return the same feature vector. This allows us to cache the feature vectors. As the CNN step
is the most time-consuming, caching the results means computing the feature vector only
once instead of at each epoch, saving us a tremendous amount of training time.

Therefore, we will classify the videos in two steps. First, we will extract the features and
cache them. Once this is done, we will train the LSTM on extracted features.

Extracting features from videos
To generate feature vectors, we will use a pretrained inception network trained on the
ImageNet dataset to categorize images in different categories.

We will remove the last layer (the fully connected layer) and only keep the feature vector
that is generated after a max-pooling operation.

Another option would be to keep the output of the layer just before average-pooling, that
is, the higher-dimensional feature maps. However, in our example, we will not need spatial
information—whether the action takes place in the middle of the frame or in the corner, the
predictions will be the same. Therefore, we will use the output of the two-dimensional
max-pooling layer. This will make the training faster, since the input of the LSTM will be 64
times smaller (64 = 8 × 8 = the size of a feature map for an input image of size 299 × 299).

TensorFlow allows us to access a pretrained model with a single line, as described in
Chapter 4, Influential Classification Tools:

inception_v3 = tf.keras.applications.InceptionV3(include_top=False,
weights='imagenet')

We add the max-pooling operation to transform the 8 × 8 × 2,048 feature map into a 1 ×
2,048 vector:

x = inception_v3.output
pooling_output = tf.keras.layers.GlobalAveragePooling2D()(x)

feature_extraction_model = tf.keras.Model(inception_v3.input,
pooling_output)
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We will use the tf.data API to load the frames from the video. An initial problem
arises—all the videos have different lengths. Here is the distribution of the number of
frames:

Figure 8-6: Distribution of the number of frames per video in the UCF101 dataset

It is always good practice to run a quick analysis on data before using it.
Manually reviewing it and plotting the distributions can save a lot of
experimenting time.

With TensorFlow, as with most deep learning frameworks, all examples in a batch must be
of the same length. The most common solution to fit this requirement is padding—we fill the
first temporal time steps with actual data and the last ones with zeros.
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In our case, we will not use all the frames from the video. At 25 frames per second, most of
the frames look alike. By using only a subset of the frames, we will reduce the size of our
input, and therefore speed up the training process. To select this subset, we can use any of
the following options:

Extract N frames per second.
Sample N frames out of all the frames.
Segment the videos in scenes and extract N frames per scene, as shown in the
following diagram:

Figure 8-7: Comparison of two sampling techniques. Dotted rectangles indicate zero padding

Due to the large variation in video length, extracting N frames per second would also result
in a large variation in input length. Although this could be solved with padding, we would
end up with some inputs mostly composed of zeros—this could lead to poor training
performance. We will, therefore, sample N images per video.

We will use the TensorFlow dataset API to feed the input to our feature extraction network:

dataset = tf.data.Dataset.from_generator(frame_generator,
             output_types=(tf.float32, tf.string),
             output_shapes=((299, 299, 3), ())
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In the previous code, we specify the input type and the input shape. Our generator will
return images of shape 299 × 299 with three channels, as well as a string representing the
filename. The filename will be used to group the frames by video later on.

The role of frame_generator is to select the frames that will be processed by the network.
We use the OpenCV library to read from the video file. For each video, we will sample an
image every N frames, where N equals num_frames / SEQUENCE_LENGTH and
SEQUENCE_LENGTH is the size of the input sequence of the LSTM. A simplified version of
this generator looks like this:

def frame_generator():
    video_paths = tf.io.gfile.glob(VIDEOS_PATH)
    for video_path in video_paths:
        capture = cv2.VideoCapture(video_path)
        num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        sample_every_frame = max(1, num_frames // SEQUENCE_LENGTH)
        current_frame = 0

        label = os.path.basename(os.path.dirname(video_path))
        while True:
            success, frame = capture.read()
            if not success:
                break

            if current_frame % sample_every_frame == 0:
                img = preprocess_frame(frame)
                yield img, video_path

            current_frame += 1

We iterate over the frames of the video, processing only a subset. At the end of the video,
the OpenCV library will return success as False and the loop will terminate.

Note that just like in any Python generator, instead of using the return
keyword, we use the yield keyword. This allows us to start returning
frames before the end of the loop. This way, the network can start training
without waiting for all the frames to be preprocessed.

Finally, we iterate over the dataset to generate video features:

dataset = dataset.batch(16).prefetch(tf.data.experimental.AUTOTUNE)
current_path = None
all_features = []

for img, batch_paths in tqdm.tqdm(dataset):
    batch_features = feature_extraction_model(img)
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    for features, path in zip(batch_features.numpy(), batch_paths.numpy()):
        if path != current_path and current_path is not None:
            output_path = current_path.decode().replace('.avi', '')
            np.save(output_path, all_features)
            all_features = []
        current_path = path
        all_features.append(features)

In the previous code, note that we iterate over the batch output and compare video
filenames. We do so because the batch size is not necessarily the same as N (the number of
frames we sample per video). Therefore, a batch may contain frames from multiple
consecutive sequences:

Figure 8-8: Representation of the input for a batch size of four and three sampled frames per video

We read the output of the network, and when we reach a different filename, we save the
video features to file. Note that this technique will only work if the frames are in the correct
order. If the dataset is shuffled, it would no longer work. Video features are saved at the
same location as the video, but with a different extension (.npy instead of .avi).

This step iterates over the 13,320 videos of the dataset and generates features for every
single one of them. Sampling 40 frames per video takes about one hour on a modern GPU.
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Training the LSTM
Now that the video features are generated, we can use them to train an LSTM. This step is
very similar to the training steps described earlier in the book—we define a model and an
input pipeline, and launch the training.

Defining the model
Our model is a simple sequential model, defined using Keras layers:

model = tf.keras.Sequential([
    tf.keras.layers.Masking(mask_value=0.),
    tf.keras.layers.LSTM(512, dropout=0.5, recurrent_dropout=0.5),
    tf.keras.layers.Dense(256, activation='relu'),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(len(LABELS), activation='softmax')
])

We apply a dropout, a concept introduced in Chapter 3, Modern Neural Networks. The
dropout parameter of the LSTM controls how much dropout is applied to the input weight
matrix. The recurrent_dropout parameter controls how much dropout is applied to the
previous state. Similar to a mask, recurrent_dropout randomly ignores part of the
previous state activations in order to avoid overfitting.

The very first layer of our model is a Masking layer. As we padded our image sequences
with empty frames in order to batch them, our LSTM cell would needlessly iterate over
those added frames. Adding the Masking layer ensures the LSTM layer stops at the actual 
end of the sequence, before it encounters a zero matrix.

The model will categorize videos in 101 categories, such as kayaking,
rafting, or fencing. However, it will only predict a vector representing the
predictions. We need a way to convert those 101 categories into vector
form. We will use a technique called one-hot encoding, described in
Chapter 1, Computer Vision and Neural Networks. Since we have 101
different labels, we will return a vector of size 101. For kayaking, the vector
will be full of zeros except for the first item, which is set to 1. For rafting, it
will be 0 except for the second element, which is set to 1, and so on for the
other categories.
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Loading the data
We will load the .npy files that are produced when generating frame features using a
generator. The code ensures that all the input sequences have the same length, padding
them with zeros if necessary:

def make_generator(file_list):
    def generator():
        np.random.shuffle(file_list)
        for path in file_list:
            full_path = os.path.join(BASE_PATH, path)
            full_path = full_path.replace('.avi', '.npy')

            label = os.path.basename(os.path.dirname(path))
            features = np.load(full_path)

            padded_sequence = np.zeros((SEQUENCE_LENGTH, 2048))
            padded_sequence[0:len(features)] = np.array(features)

            transformed_label = encoder.transform([label])
            yield padded_sequence, transformed_label[0]
    return generator

In the previous code, we defined a Python closure function—a function that returns
another function. This technique allows us to create train_dataset, returning training
data, and validation_dataset, returning validation data with just one generator
function:

train_dataset = tf.data.Dataset.from_generator(make_generator(train_list),
                 output_types=(tf.float32, tf.int16),
                 output_shapes=((SEQUENCE_LENGTH, 2048), (len(LABELS))))
train_dataset = train_dataset.batch(16)
train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)

valid_dataset = tf.data.Dataset.from_generator(make_generator(test_list),
                 output_types=(tf.float32, tf.int16),
                 output_shapes=((SEQUENCE_LENGTH, 2048), (len(LABELS))))
valid_dataset = valid_dataset.batch(16)
valid_dataset = valid_dataset.prefetch(tf.data.experimental.AUTOTUNE)

We also batch and prefetch the data according to the best practices that were described in
Chapter 7, Training on Complex and Scarce Datasets.
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Training the model
The training procedure is very similar to those previously described in the book, and we
invite the readers to refer to the notebook attached to this chapter. Using the model
described previously, we reach a precision level of 72% on the validation set.

This result can be compared to the state-of-the-art precision level of 94%, which is obtained
when using more advanced techniques. Our simple model could be enhanced by
improving frame sampling, using data augmentation, using a different sequence length, or
by optimizing the size of the layers.

Summary
We expanded our knowledge of neural networks by describing the general principles of
RNNs. After covering the inner workings of the basic RNN, we extended backpropagation
to apply it to recurrent networks. As presented in this chapter, BPTT suffers from gradient
vanishing when applied to RNNs. This can be worked around by using truncated
backpropagation, or by using a different type of architecture—LSTM networks.

We applied those theoretical principles to a practical problem—action recognition in
videos. By combining CNNs and LSTMs, we successfully trained a network to classify
videos in 101 categories, introducing video-specific techniques such as frame sampling and
padding.

In the next chapter, we will broaden our knowledge of neural network applications by
covering new platforms—mobile devices and web browsers.

Questions
What are the main advantages of LSTMs over the simple RNN architecture?1.
What is the CNN used for when it is applied before the LSTM?2.
What is gradient vanishing and why does it occur? Why is it a problem?3.
What are some of the workarounds for gradient vanishing?4.
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Further reading
RNNs with Python Quick Start Guide (https:/ /www. packtpub. com/ big-data- and-
business- intelligence/ recurrent- neural- networks- python- quick- start-
guide), by Simeon Kostadinov: This book details RNN architectures, and applies
them to examples using TensorFlow 1.

A Critical Review of RNNs for Sequence Learning (https:/ /arxiv. org/ abs/ 1506.
00019), by Zachary C. Lipton et al.: This survey reviews and synthesizes three
decades of RNN architectures.
Empirical Evaluation of Gated RNNs on Sequence Modeling (https:/ /arxiv. org/
abs/1412. 3555), by Junyoung Chung et al.: This paper compares the
performance of different RNN architectures.
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9
Optimizing Models and

Deploying on Mobile Devices
Computer vision applications are various and multifaceted. While most of the training
steps take place on a server or a computer, deep learning models are used on a variety of
frontend devices, such as mobile phones, self-driving cars, and Internet-of-Things (IoT)
devices. With limited computing power, performance optimization becomes paramount.

In this chapter, we will introduce techniques to limit your model size and improve
inference speed while maintaining good prediction quality. As a practical example, we will
create a simple mobile application to recognize facial expressions on iOS and Android
devices, as well as in the browser.

The following topics will be covered in this chapter:

How to reduce model size and boost speed without impacting accuracy
Analyzing model computational performance in depth
Running models on mobile phones (iOS and Android)
Introducing TensorFlow.js to run models in the browser

Technical requirements
The code for this chapter is available from https:/ /github. com/ PacktPublishing/ Hands-
On-Computer-Vision- with- TensorFlow- 2/ tree/ master/ Chapter09.

When developing applications for mobile phones, you will need knowledge of Swift (for
iOS) or Java (for Android). For computer vision in the browser, you will require knowledge
of JavaScript. The examples in this chapter are simple and thoroughly explained, making it
easy to understand for developers who are more familiar with Python.
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Moreover, to run the example iOS app, you will need a compatible device as well as a Mac
computer with Xcode installed. To run the Android app, you will need an Android device.

Optimizing computational and disk
footprints
When using a computer vision model, some characteristics are crucial. Optimizing a model
for speed may allow it to run in real time, opening up many new uses. Improving a
model's accuracy by even a few percent may make the difference between a toy model and a
real-life application.

Another important characteristic is size, which impacts how much storage the model will
use and how long it will take to download it. For some platforms, such as mobile phones or
web browsers, the size of the model matters to the end user.

In this section, we will describe techniques to improve the model inference speed and how
to reduce its size.

Measuring inference speed
Inference describes the process of using a deep learning model to get predictions. It is 
measured in images per second or seconds per image. Models must run between 5 and 30
images per second to be considered real-time processing. Before we can improve inference
speed, we need to measure it properly.

If a model can process i images per second, we can always run N inference pipelines
simultaneously to boost performance—the model will then be able to process N × i images
per second. While parallelism benefits many applications, it would not work for real-time
applications.

In a real-time context, such as with a self-driving car, no matter how many images can be
processed in parallel, what matters is latency—how long it takes to compute predictions for
a single image. Therefore, for real-time applications, we only measure the latency of a
model—how much time it takes to process a single image.

For non-real-time applications, you can run as many inference processes in parallel as
necessary. For instance, for a video, you can analyze N chunks of video in parallel and
concatenate the predictions at the end of the process. The only impact will be in terms of
financial cost, as you will need more hardware to process the frames in parallel.
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Measuring latency
As stated, to measure how fast a model performs, we want to compute the time it takes to
process a single image. However, to minimize measuring error, we will actually measure the
processing time for several images. We will then divide the time obtained by the number of
images.

We are not measuring the computing time over a single image for several reasons. First, we
want to remove measurement error. When running the inference for the first time, the
machine could be busy, the GPU might not be initialized yet, or many other technicalities
could be causing the slowdown. Running several times allows us to minimize this error.

The second reason is TensorFlow's and CUDA's warmup. When running an operation for
the first time, deep learning frameworks are usually slower—they have to initialize
variables, allocate memory, move data around, and so on. Moreover, when running
repetitive operations, they usually automatically optimize for it.

For all those reasons, it is recommended to measure inference time with multiple images to
simulate a real environment.

When measuring inference time, it is also very important to include data
loading, data preprocessing, and post-processing times, as these can be
significant.

Using tracing tools to understand computational
performance
While measuring the total inference time of a model informs you of the feasibility of an
application, you might sometimes need a more detailed performance report. To do so,
TensorFlow offers several tools. In this section, we will discuss the trace tool, which is part
of the TensorFlow summary package.

In Chapter 7, Training on Complex and Scarce Datasets, we described how
to analyze the performance of input pipelines. Refer to this chapter to
monitor preprocessing and data ingestion performance.
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To use it, call trace_on and set profiler to True. You can then run TensorFlow or Keras
operations and export the trace to a folder:

logdir = './logs/model'
writer = tf.summary.create_file_writer(logdir)

tf.summary.trace_on(profiler=True)
model.predict(train_images)
with writer.as_default():
  tf.summary.trace_export('trace-model', profiler_outdir=logdir)

Omitting the call to create_file_writer and with
writer.as_default() will still create a trace of the operations.
However, the model graph representation will not be written to disk.

Once the model starts running with tracing enabled, we can point TensorBoard to this
folder by executing the following command in the command line:

$ tensorboard --logdir logs

After opening TensorBoard in the browser and clicking on the Profile tab, we can then
review the operations:

Figure 9-1: Trace of the operations for a simple fully connected model over multiple batches of data

As seen in the preceding timeline, the model is composed of many small operations. By
clicking on an operation, we can obtain its name and its duration. For instance, here are the
details for a dense matrix multiplication (a fully-connected layer):

Figure 9-2: The details of a matrix multiplication operation



Optimizing Models and Deploying on Mobile Devices Chapter 9

[ 283 ]

TensorFlow traces can end up taking a large amount of disk space. For
this reason, we recommend running the operations you want to trace on a
few batches of data only.

On the TPU, a dedicated Capture Profile button is available in TensorBoard. The TPU
name, IP, and the trace recording time need to be specified.

In practice, the tracing tool is used on much larger models to determine the following:

Which layers are taking the most computing time.
Why a model is taking more time than usual after a modification to the
architecture.
Whether TensorFlow is always computing numbers or is waiting on data. This
can happen if preprocessing takes too long or if there is a lot of back and forth
between CPUs.

We encourage you to trace the models you are using to get a better understanding of the
computational performance.

Improving model inference speed
Now that we know how to properly measure a model inference speed, we can use several
approaches to improve it. Some involve changing the hardware used, while others imply
changing the model architecture itself.

Optimizing for hardware 
As we saw previously, the hardware used for inference is crucial for speed. From the
slowest option to the fastest, it is recommended to use the following:

CPU: While slower, it is often the cheapest option.
GPU: Faster but more expensive. Many smartphones have integrated GPUs that
can be used for real-time applications.
Specialized hardware: For instance, Google's TPU (for servers), Apple's Neural
Engine (on mobile), or NVIDIA Jetson (for portable hardware). They are chips
made specifically for running deep learning operations.

If speed is crucial for your application, it is important to use the fastest hardware available
and to adapt your code.
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Optimizing on CPUs
Modern Intel CPUs can compute matrix operations more quickly through special
instructions. This is done using the Math Kernel Library for Deep Neural Networks
(MKL-DNN). Out-of-the-box TensorFlow does not exploit those instructions. Using them
requires either compiling TensorFlow with the right options or installing a special build of
TensorFlow called tensorflow-mkl.

Information on how to build TensorFlow with MKL-DNN is available
at https:/ / www. tensorflow. org/ . Note that the toolkit currently only
works on Linux.

Optimizing on GPUs
To run models on NVIDIA GPUs, two libraries are mandatory—CUDA and cuDNN.
TensorFlow natively exploits the speed-up offered by those libraries.

To properly run operations on the GPU, the tensorflow-gpu package
must be installed. Moreover, the CUDA version of tensorflow-gpu
must match the one installed on the computer.

Some modern GPUs offer Floating Point 16 (FP16) instructions. The idea is to use reduced
precision floats (16 bits instead of the 32 bits commonly used) in order to speed up
inference while not impacting the output quality by much. Not all GPUs are compatible
with FP16.

Optimizing on specialized hardware
Since every chip is different, the techniques ensuring faster inference vary from one
manufacturer to another. The steps necessary for running a model are well documented by
the manufacturer.

A rule of thumb is to not use exotic operations. If one of the layers is running operations
that include conditions or branching, it is likely that the chip will not support it. The
operations will have to run on the CPU, making the whole process slower. It is therefore
recommended to only use standard operations—convolution, pooling, and fully connected
layers.

https://www.tensorflow.org/
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https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/


Optimizing Models and Deploying on Mobile Devices Chapter 9

[ 285 ]

Optimizing input
The inference speed of a computer vision model is directly proportional to the size of the
input image. Moreover, dividing the dimensions of an image by two means four times
fewer pixels for the model to process. Therefore, using smaller images improves inference
speed.

When using smaller images, the model has less information and fewer details to work with.
This often has an impact on the quality of the results. It is necessary to experiment with
image size to find a good trade-off between speed and accuracy.

Optimizing post-processing
As we saw previously in the book, most models require post-processing operations. If
implemented using the wrong tools, post-processing can take a lot of time. While most
post-processing happens on the CPU, it is sometimes possible to run some operations on
the GPU.

Using tracing tools, we can analyze the time taken by post-processing to optimize it. Non-
Maximum Suppression (NMS) is an operation that can take a lot of time if not
implemented correctly (refer to Chapter 5, Object Detection Models):

Figure 9-3: Evolution of NMS computing time with the number of boxes
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Notice in the preceding diagram that the slow implementation takes linear computing time,
while the fast implementation is almost constant. Though four milliseconds may seem quite
low, keep in mind that some models can return an even larger number of boxes, resulting
in a post-processing time.

When the model is still too slow
Once the model has been optimized for speed, it can sometimes still be too slow for real-
time applications. There are a few techniques to work around the slowness while
maintaining a real-time feeling for the user.

Interpolating and tracking
Object detection models are notoriously computationally-intensive. Running on every
frame of a video is sometimes impractical. A common technique is to use the model every
few frames only. In-between frames, linear interpolation is used to follow the tracked
object.

While this technique does not work for real-time applications, another one that is
commonly used is object tracking. Once an object is detected with a deep learning model, a
more simple model is used to follow the boundaries of the object.

Object tracking can work on almost any kind of object as long as it is well distinguishable
from its background and its shape does not change excessively. There are many object
tracking algorithms (some of them are available through OpenCV's tracker module, 
documented here https:/ / docs. opencv. org/ master/ d9/ df8/group_ _tracking. html);
many of them are available for mobile applications.

Model distillation
When none of the other techniques work, one last option is model distillation. The general
idea is to train a small model to learn the output of a bigger model. Instead of training the
small model to learn the raw labels (we could use the data for this), we train it to learn the
output of the bigger model.

Let's see an example—we trained a very large network to predict an animal's breed from a
picture. The output is as follows:
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Figure 9-4: Examples of predictions made by our network

Because our model is too large to run on mobile, we decided to train a smaller model.
Instead of training it with the labels we have, we decided to distill the knowledge of the
larger network. To do so, we will use the output of the larger network as targets.

For the first picture, instead of training the new model with a target of [1, 0, 0], we will use
the output of the larger network, a target of [0.9, 0.7, 0.1]. This new target is called a soft
target. This way, the smaller network will be taught that, while the animal in the first 
picture is not a husky, it does look similar to one according to more advanced models, as
the picture has a score of 0.7 for the husky class.

The larger network managed to directly learn from the original labels ([1, 0, 0] in our
example) because it has more computing and memory power. During training, it was able
to deduce that breeds of dogs look like one another but belong to different classes. A
smaller model would not have the capacity to learn such abstract relations in the data by
itself, but it can be guided by the other network. Following the aforementioned procedure,
the inferred knowledge from the first model will be passed to the new one, hence the name
knowledge distillation.

Reducing model size
When using a deep learning model in the browser or on mobile, the model needs to be
downloaded on the device. It needs to be as lightweight as possible for the following
reasons:

Users are often using their phone on a cellular connection that is sometimes
metered.
The connection can also be slow.
Models can be frequently updated.
Disk space on portable devices is sometimes limited.
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With hundreds of millions of parameters, deep learning models are notoriously disk space-
consuming. Thankfully, there are techniques to reduce their size.

Quantization
The most common technique is to reduce the precision of the parameters. Instead of storing
them as 32-bit floats, we can store them as 16- or 8-bit floats. There have been experiments
for using binary parameters, taking only 1 bit to store.

Quantization is often done at the end of training, when converting the model for use on the
device. This conversion impacts the accuracy of the model. Because of this, it is very
important to evaluate the model after quantization.

Among all the compression techniques, quantization is often the one with the highest
impact on size and the least impact on performance. It is also very easy to implement.

Channel pruning and weight sparsification
Other techniques exist but can be harder to implement. There is no straightforward way to
apply them because they rely mostly on trial and error.

The first one, channel pruning, consists of removing some convolutional filters or some
channels. Convolutional layers usually have between 16 and 512 different filters. At the end
of the training phase, it often appears that some of them are not useful. We can remove
them to avoid storing weights that will not help the model performance.

The second one is called weight sparsification. Instead of storing weights for the whole
matrix, we can store only the ones that are deemed important or not close to zero.

For instance, instead of storing a weight vector such as [0.1, 0.9, 0.05, 0.01, 0.7, 0.001], we
could keep weights that are not close to zero. The result is a list of tuples in the form
(position, value). In our example, it would be [(1, 0.9), (4, 0.7)]. If many of the vector's values
are close to zero, we could expect a large reduction in stored weights.

On-device machine learning
Due to their high computational requirements, deep learning algorithms are most
commonly run on powerful servers. They are computers specifically designed for this task.
For latency, privacy, or cost reasons, it is sometimes more interesting to run inference on
customers' devices: smartphones, connected objects, cars, or microcomputers.
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What all those devices have in common are lower computational power and low power
requirements. Because they are at the end of the data life cycle, on-device machine learning
is also referred to as edge computing or machine learning on the edge.

With regular machine learning, the computation usually happens in the data center. For
instance, when you upload a photo to Facebook, a deep learning model is run in Facebook's
data center to detect your friends' faces and help you tag them.

With on-device machine learning, the inference happens on your device. A common
example is Snapchat face filters—the model that detects your face position is run directly on
the device. However, model training still happens in data centers—the device uses a
trained model fetched from the server:

Figure 9-5: Diagram comparing on-device machine learning with conventional machine learning

Most on-device machine learning happens for inference. The training of
models is still mostly done on dedicated servers.

Considerations of on-device machine learning
The use of on-device machine learning (on-device ML) is usually motivated by a
combination of reasons, but also has its limitations.
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Benefits of on-device ML
The following paragraphs list the main benefits of running machine learning algorithms
directly on users' devices.

Latency
The most common motivation is latency. Because sending data to a server for processing
takes time, real-time applications make it impossible to use conventional machine learning.
The most striking illustration is self-driving cars. To react quickly to its environment, the
car must have the lowest latency possible. Therefore, it is crucial to run the model in the car.
Moreover, some devices are used in places where internet access is simply not available.

Privacy
As consumers care more and more about their privacy, companies are devising techniques
to run deep learning models while respecting this demand.

Let's use a large-scale example from Apple. When browsing through photos on an iOS
device, you may notice that it is possible to search for objects or things—cat, bottle,
car will return the corresponding images. This is the case even if the pictures are not sent
to the cloud. For Apple, it was important to make that feature available while respecting the
privacy of its users. Sending pictures for processing without the users' consent would have
been impossible.

Therefore, Apple decided to use on-device ML. Every night, when the phone is charging, a
computer vision model is run on the iPhone to detect objects in the image and make this
feature available.

Cost
On top of respecting user privacy, this feature also reduces costs for Apple because the
company does not have to pay the bill for servers to process the hundreds of millions of
images that their customers produce. 

On a much smaller scale, it is now possible to run some deep learning models in the
browser. This is especially useful for demos—by running the models on the user's
computer, you can avoid paying for a costly GPU-enabled server to run inference at scale.
Moreover, there will not be any overloading issues because the more users that access the
page, the more computing power that is available.
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Limitations of on-device ML
While it has many benefits, this concept also has a number of limitations. First of all, the
limited computing power of devices means that some of the most powerful models cannot
be considered.

Also, many on-device deep learning frameworks are not compatible with the most
innovative or the most complex layers. For instance, TensorFlow Lite is not compatible with
custom LSTM layers, making it hard to port advanced recurrent neural networks on mobile
using this framework.

Finally, making models available on devices implies sharing the weights and the
architecture with users. While encryption and obfuscation methods exist, it increases the
risk of reverse engineering or model theft.

Practical on-device computer vision
Before discussing the practical application of on-device computer vision, we will have a
look at the general considerations for running deep learning models on mobile devices.

On-device computer vision particularities
When running computer vision models on mobile devices, the focus switches from raw
performance metrics to user experience. On mobile phones, this means minimizing battery
and disk usage: we don't want to drain the phone's battery in minutes or fill up all the
available space on the device. When running on mobile, it is recommended to use smaller
models. As they contain fewer parameters, they use less disk space. Moreover, as they
require fewer operations, this leads to reduced battery usage.

Another particularity of mobile phones is orientation. In training datasets, most pictures are
provided with the correct orientation. While we sometimes change this orientation during
data augmentation, the images are rarely upside down or completely sideways. However,
there are many ways to hold a mobile phone. For this reason, we must monitor the device's
orientation to make sure that we are feeding the model with images that are correctly
oriented.
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Generating a SavedModel
As we mentioned earlier, on-device machine learning is typically used for inference.
Therefore, a prerequisite is to have a trained model. Hopefully, this book will have given you
a good idea of how to implement and prepare your network. We now need to convert the
model to an intermediate file format. It will then be converted by a library for mobile use.

In TensorFlow 2, the intermediate format of choice is SavedModel. A SavedModel contains
the model architecture (the graph) and the weights.

Most TensorFlow objects can be exported as a SavedModel. For instance, the following code
exports a trained Keras model:

tf.saved_model.save(model, export_dir='./saved_model')

Generating a frozen graph
Before introducing the SavedModel API, TensorFlow mainly used the frozen graphs
format. In practice, a SavedModel is a wrapper around a frozen graph. The former includes
more metadata and can include the preprocessing function needed to serve the model.
While SavedModel is gaining in popularity, some libraries still require frozen models.

To convert a SavedModel to a frozen graph, the following code can be used:

from tensorflow.python.tools import freeze_graph

output_node_names = ['dense/Softmax']
input_saved_model_dir = './saved_model_dir'
input_binary = False
input_saver_def_path = False
restore_op_name = None
filename_tensor_name = None
clear_devices = True
input_meta_graph = False
checkpoint_path = None
input_graph_filename = None
saved_model_tags = tag_constants.SERVING

freeze_graph.freeze_graph(input_graph_filename, input_saver_def_path,
                          input_binary, checkpoint_path, output_node_names,
                          restore_op_name, filename_tensor_name,
                          'frozen_model.pb', clear_devices, "", "", "",
                          input_meta_graph, input_saved_model_dir,
                          saved_model_tags)
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On top of specifying the input and output, we also need to specify output_node_names.
Indeed, it is not always clear what the inference output of a model is. For instance, image
detection models have several outputs—the box coordinates, the scores, and the classes. We
need to specify which one(s) to use.

Note that many arguments are False or None because this function can
accept many different formats, and SavedModel is only one of them.

Importance of preprocessing
As explained in Chapter 3, Modern Neural Networks, input images have to be preprocessed.
The most common preprocessing method is to divide each channel by 127.5 (127.5 = 255/2 =
middle value of an image pixel) and subtract 1. This way, we represent images with values
between -1 and 1:

Figure 9-6: Example of preprocessing for a 3 x 3 image with a single channel

However, there are many ways to represent images, depending on the following:

The order of the channels: RGB or BGR
Whether the image is between 0 and 1, -1 and 1, or 0 and 255
The order of the dimensions: [W, H, C] or [C, W, H]
The orientation of the image

When porting a model, it is paramount to use the exact same preprocessing on a device as
during training. Failing to do so will lead the model to infer poorly, sometimes even to fail
completely, as the input data will be too different compared with the training data.

All mobile deep learning frameworks provide some options to specify preprocessing
settings. It is up to you to set the correct parameters.

Now that we have obtained a SavedModel and that we know the importance of pre-
processing, we are ready to use our model on different devices.
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Example app – recognizing facial
expressions
To directly apply the notions presented in this chapter, we will develop an app making use
of a lightweight computer vision model, and we will deploy it to various platforms.

We will build an app that classifies facial expressions. When pointed to a person's face, it
will output the expression of that person—happy, sad, surprised, disgusted, angry, or
neutral. We will train our model on the Facial Expression Recognition (FER) dataset
available at https:/ / www. kaggle. com/ c/challenges- in- representation- learning-
facial-expression- recognition- challenge, put together by Pierre-Luc Carrier and
Aaron Courville. It is composed of 28,709 grayscale images of 48 × 48 in size:

Figure 9-7: Images sampled from the FER dataset

Inside the app, the naive approach would be to capture images with the camera and then
feed them directly to our trained model. However, this would yield poor results as objects
in the environment would impair the quality of the prediction. We need to crop the face of
the user before feeding it to the user:

Figure 9-8: Two-step flow of our facial expression classification app
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While we could build our own model for the first step (face detection), it is much more
convenient to use out-of-the-box APIs. They are available natively on iOS and through
libraries on Android and in the browser. The second step, expression classification, will be
performed using our custom model.

Introducing MobileNet
The architecture we will use for classification is named MobileNet. It is a convolutional
model designed to run on mobile. Introduced in 2017, in the paper MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications, by Andrew G Howard et al., it
uses a special kind of convolution to reduce the number of parameters as well as the
computations necessary to generate predictions.

MobileNet uses depthwise separable convolutions. In practice, this means that the 
architecture is composed of an alternation of two types of convolutions:

Pointwise convolutions: These are just like regular convolutions, but with a 1 × 11.
kernel. The purpose of pointwise convolutions is to combine the different 
channels of the input. Applied to an RGB image, they will compute a weighted
sum of all channels.
Depthwise convolutions: These are like regular convolutions, but do not 2.
combine channels. The role of depthwise convolutions is to filter the content of
the input (detect lines or patterns). Applied to an RGB image, they will compute
a feature map for each channel.

When combined, these two types of convolutions perform similarly to regular
convolutions. However, due to the small size of their kernels, they require fewer
parameters and computational power, making this architecture suited for mobile devices.

Deploying models on-device
To illustrate on-device machine learning, we will port a model to iOS and Android devices,
as well as for web browsers. We will also describe the other types of devices available.
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Running on iOS devices using Core ML
With the release of its latest devices, Apple is putting the emphasis on machine learning.
They designed a custom chip—the neural engine. This can achieve fast deep learning
operations while maintaining a low power usage. To fully benefit from this chip,
developers must use a set of official APIs called Core ML (refer to the documentation
at https://developer. apple. com/ documentation/ coreml).

To use an existing model with Core ML, developers need to convert it to the .mlmodel
format. Thankfully, Apple provides Python tools to convert from Keras or TensorFlow.

In addition to speed and energy efficiency, one of the strengths of Core ML is its integration
with other iOS APIs. Powerful native methods exist for augmented reality, face detection,
object tracking, and much more.

While TensorFlow Lite supports iOS, as of now, we still recommend using
Core ML. This allows faster inference time and broader feature
compatibility.

Converting from TensorFlow or Keras
To convert our model from Keras or TensorFlow, another tool is needed—tf-coreml

(https://github.com/ tf- coreml/ tf- coreml).

At the time of writing, tf-coreml is not compatible with TensorFlow 2.
We have provided a modified version while the library's developers are
updating it. Refer to the chapter's notebook for the latest installation
instructions.

We can then convert our model to .mlmodel:

import tfcoreml as tf_converter

tf_converter.convert('frozen_model.pb',
                     'mobilenet.mlmodel',
                     class_labels=EMOTIONS,
                     image_input_names=['input_0:0'],
                     output_feature_names=[output_node_name + ':0'],
                     red_bias=-1,
                     green_bias=-1,
                     blue_bias=-1,
                     image_scale=1/127.5,
                     is_bgr=False)
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A few arguments are important:

class_labels: The list of labels. Without this, we would end up with class IDs
instead of readable text.
input_names: The name of the input layer.
image_input_names: This is used to specify to the Core ML framework that our
input is an image. This will be useful later on because the library will handle all
preprocessing for us.
output_feature_names: As with the frozen model conversion, we need to
specify the outputs we will target in our model. In this case, they are not
operations but outputs. Therefore, :0 must be appended to the name.
image_scale: The scale used for preprocessing.
bias: The bias of the preprocessing for each color.
is_bgr: Must be True if channels are in the BGR order, or False if RGB.

As stated earlier, scale, bias, and is_bgr must match the ones used during training.

After converting the model to a .mlmodel file, it can be opened in Xcode:

Figure 9-9: Screenshot of Xcode showing the details of a model

Note that the input is recognized as an Image since we specified image_input_names.
Thanks to this, Core ML will be able to handle the preprocessing of the image for us.
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Loading the model
The full app is available in the chapter repository. A Mac computer and an iOS device are
necessary to build and run it. Let's briefly detail the steps to get predictions from the model.
Note that the following code is written in Swift. It has a similar syntax to Python:

private lazy var model: VNCoreMLModel = try! VNCoreMLModel(for:
mobilenet().model)

private lazy var classificationRequest: VNCoreMLRequest = {
    let request = VNCoreMLRequest(model: model, completionHandler: { [weak
self] request, error in
        self?.processClassifications(for: request, error: error)
    })
    request.imageCropAndScaleOption = .centerCrop
    return request
}()

The code consists of three main steps:

Loading the model. All the information about it is available in the .mlmodel file.1.
Setting a custom callback. In our case, after the image is classified, we will call2.
processClassifications.
Setting imageCropAndScaleOption. Our model was designed to accept square3.
images, but the input often has a different ratio. Therefore, we configure Core
ML to crop the center of the image by setting it to centerCrop.

We also load the model used for face detection using the native
VNDetectFaceRectanglesRequest and VNSequenceRequestHandler functions:

private let faceDetectionRequest = VNDetectFaceRectanglesRequest()
private let faceDetectionHandler = VNSequenceRequestHandler()

Using the model
As an input, we access pixelBuffer, which contains the pixel of the video feed from the
camera of the device. We run our face detection model and obtain faceObservations.
This will contain the detection results. If the variable is empty, it means that no face was
detected and we do not go further in the function:

try faceDetectionHandler.perform([faceDetectionRequest], on: pixelBuffer,
orientation: exifOrientation)

guard let faceObservations = faceDetectionRequest.results as?
[VNFaceObservation], faceObservations.isEmpty == false else {
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    return
}

Then, for each faceObservation in faceObservations, we classify the area containing
the face:

let classificationHandler = VNImageRequestHandler(cvPixelBuffer:
pixelBuffer, orientation: .right, options: [:])

let box = faceObservation.boundingBox
let region = CGRect(x: box.minY, y: 1 - box.maxX, width: box.height,
height:box.width)
self.classificationRequest.regionOfInterest = region

try classificationHandler.perform([self.classificationRequest])

To do so, we specify regionOfInterest of the request. This notifies the Core ML
framework that the input is this specific area of the image. This is very convenient as we do
not have to crop and resize the image—the framework handles this for us. Finally, we call
the classificationHandler.perform native method.

Note that we had to change the coordinate system. The face coordinates
are returned with an origin at the top left of the image, while
regionOfInterest must be specified with an origin in the bottom left.

Once the predictions are generated, our custom callback, processClassifications, will
be called with the results. We will then be able to display the results to the user. This part is
covered in the full application available in the book's GitHub repository.

Running on Android using TensorFlow Lite
TensorFlow Lite is a mobile framework that allows you to run TensorFlow models on
mobile and embedded devices. It supports Android, iOS, and Raspberry Pi. Unlike Core
ML on iOS devices, it is not a native library but an external dependency that must be added
to your app.

While Core ML was optimized for iOS device hardware, TensorFlow Lite performance may
vary from device to device. On some Android devices, it can use the GPU to improve
inference speed.

To use TensorFlow Lite for our example application, we will first convert our model to the
library's format using the TensorFlow Lite converter.
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Converting the model from TensorFlow or Keras
TensorFlow integrates a function to transform a SavedModel model to the TF Lite format.
To do so, we first create a TensorFlow Lite converter object:

# From a Keras model
converter = tf.lite.TFLiteConverter.from_keras_model(model)
## Or from a SavedModel
converter = tf.lite.TFLiteConverter('./saved_model')

Then, the model is saved to disk:

tflite_model = converter.convert()
open("result.tflite", "wb").write(tflite_model)

You will notice that the TensorFlow Lite function offers fewer options
than the Apple Core ML equivalent. Indeed, TensorFlow Lite does not
handle preprocessing and resizing of the images automatically. This has to
be handled by the developer in the Android app.

Loading the model
After converting the model to the .tflite format, we can add it to the assets folder of our
Android application. We can then load the model using a helper function, loadModelFile:

tfliteModel = loadModelFile(activity);

Because our model is in the assets folder of our app, we need to pass the
current activity. If you are not familiar with Android app development,
you can think of an activity as a specific screen of an app.

We can then create Interpreter. In TensorFlow Lite, the interpreter is necessary to run a
model and return predictions. In our example, we pass the default Options constructor.
The Options constructor could be used to change the number of threads or the precision of
the model:

Interpreter.Options tfliteOptions = new Interpreter.Options();
tflite = new Interpreter(tfliteModel, tfliteOptions);

Finally, we will create ByteBuffer. This is a data structure that contains the input image
data:

imgData =
    ByteBuffer.allocateDirect(
        DIM_BATCH_SIZE
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            * getImageSizeX()
            * getImageSizeY()
            * DIM_PIXEL_SIZE
            * getNumBytesPerChannel());

ByteBuffer is an array that will contain the pixels of the image. Its size depends on the
following:

The batch size—in our case, 1.
The dimensions of the input image.
The number of channels (DIM_PIXEL_SIZE)—3 for RGB, 1 for grayscale.
Finally, the number of bytes per channel. As 1 byte = 8 bits, a 32-bits input will
require 4 bytes. If using quantization, an 8-bits input will require 1 byte.

To process predictions, we will later fill this imgData buffer and pass it to the interpreter.
Our facial expression detection model is ready to be used. Before we can start using our full
pipeline, we only need to instantiate the face detector:

faceDetector = new FaceDetector.Builder(this.getContext())
        .setMode(FaceDetector.FAST_MODE)
        .setTrackingEnabled(false)
        .setLandmarkType(FaceDetector.NO_LANDMARKS)
        .build();

Note that this FaceDetector class comes from the Google Vision
framework and has nothing to do with TensorFlow Lite.

Using the model
For our example app, we will work with bitmap images. You can see bitmaps as a matrix of
raw pixels. They are compatible with most of the image libraries on Android. We obtain
this bitmap from the view that displays the video feed from the camera, called
textureView:

Bitmap bitmap = textureView.getBitmap(previewSize.getHeight() / 4,
previewSize.getWidth() / 4)

We do not capture the bitmap at full resolution. Instead, we divide its
dimensions by 4 (this number was picked by trial and error). Choosing a
size that's too large would result in very slow face detection, reducing the
inference time of our pipeline.



Optimizing Models and Deploying on Mobile Devices Chapter 9

[ 302 ]

We then proceed to create vision.Frame from the bitmap. This step is necessary to pass
the image to faceDetector:

Frame frame = new Frame.Builder().setBitmap(bitmap).build();
faces = faceDetector.detect(frame);

Then, for each face in faces, we can crop the face of the user in the bitmap. Provided in
the GitHub repository, the cropFaceInBitmap helper function does precisely this—it
accepts the coordinates of the face and crops the corresponding area in the bitmap:

Bitmap faceBitmap = cropFaceInBitmap(face, bitmap);
Bitmap resized = Bitmap.createScaledBitmap(faceBitmap,
classifier.getImageSizeX(), classifier.getImageSizeY(), true)

After resizing the bitmap to fit the input of our model, we fill imgData, ByteBuffer,
which Interpreter accepts:

imgData.rewind();
resized.getPixels(intValues, 0, resized.getWidth(), 0, 0,
resized.getWidth(), resized.getHeight());

int pixel = 0;
for (int i = 0; i < getImageSizeX(); ++i) {
  for (int j = 0; j < getImageSizeY(); ++j) {
    final int val = intValues[pixel++];
    addPixelValue(val);
  }
}

As you can see, we iterate over the bitmap's pixels to add them to imgData. To do so, we
use addPixelValue. This function handles the preprocessing of each pixel. It will be
different depending on the characteristics of the model. In our case, the model is using a
grayscale image. We must therefore convert each pixel from color to grayscale:

protected void addPixelValue(int pixelValue) {
  float mean =  (((pixelValue >> 16) & 0xFF) + ((pixelValue >> 8) & 0xFF) +
(pixelValue & 0xFF)) / 3.0f;
  imgData.putFloat(mean / 127.5f - 1.0f);
}

In this function, we are using bit-wise operations to compute the mean of the three colors of
each pixel. We then divide it by 127.5 and subtract 1 as this is the preprocessing step of
our model.
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At the end of this process, imgData contains the input information in the correct format.
Finally, we can run the inference:

float[][] labelProbArray = new float[1][getNumLabels()];
tflite.run(imgData, labelProbArray);

The predictions will be inside labelProbArray. We can then process and display them.

Running in the browser using TensorFlow.js
With web browsers packing more and more features every year, it was only a matter of
time before they could run deep learning models. Running models in the browser has many
advantages:

The user does not have anything to install.
The computing is done on the user's machine (mobile or computer).
The model can sometimes make use of the device's GPU.

The library to run in the browser is called TensorFlow.js (refer to the documentation at
https://github.com/ tensorflow/ tfjs). We will implement our face expression
classification application using it.

While TensorFlow cannot take advantage of non-NVIDIA GPUs,
TensorFlow.js can use GPUs on almost any device. GPU support in the
browser was first implemented to display graphical animations through
WebGL (a computer graphics API for web applications, based on
OpenGL). Since it involves matrix calculus, it was then repurposed to run
deep learning operations.

Converting the model to the TensorFlow.js format
To use TensorFlow.js, the model must first be converted to the correct format using tfjs-
converter. It can convert Keras models, frozen models, and SavedModels. Installation
instructions are provided in the GitHub repository.

Then, converting a model is very similar to the process done for TensorFlow Lite. Instead of
being done in Python, it is done from the command line:

$ tensorflowjs_converter ./saved_model --input_format=tf_saved_model my-
tfjs --output_format tfjs_graph_model

Similar to TensorFlow Lite, we need to specify the names of the output nodes.
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The output is composed of multiple files:

optimized_model.pb: Contains the model graph
weights_manifest.json: Contains information about the list of weights
group1-shard1of5, group1-shard2of5, ..., group1-shard5of5: Contains the
weights of the model split into multiple files

The model is split into multiple files because parallel downloads are usually faster.

Using the model
In our JavaScript app, after importing TensorFlow.js, we can load our model. Note that the
following code is in JavaScript. It has a similar syntax to Python:

import * as tf from '@tensorflow/tfjs';
const model = await tf.loadModel(MOBILENET_MODEL_PATH);

We will also use a library called face-api.js to extract faces:

import * as faceapi from 'face-api.js';
await faceapi.loadTinyFaceDetectorModel(DETECTION_MODEL_PATH)

Once both models are loaded, we can start processing images from the user:

const video = document.getElementById('video');
const detection = await faceapi.detectSingleFace(video, new
faceapi.TinyFaceDetectorOptions())

if (detection) {
 const faceCanvases = await faceapi.extractFaces(video, [detection])
 const values = await predict(faceCanvases[0])
}

Here, we grab a frame from the video element displaying the webcam of the user. The
face-api.js library will attempt to detect a face in this frame. If it detects a frame, the
part of the image containing the frame is extracted and fed to our model.

The predict function handles the preprocessing of the image and the classification. This is
what it looks like:

async function predict(imgElement) {
  let img = await tf.browser.fromPixels(imgElement, 3).toFloat();

  const logits = tf.tidy(() => {
    // tf.fromPixels() returns a Tensor from an image element.
    img = tf.image.resizeBilinear(img, [IMAGE_SIZE, IMAGE_SIZE]);
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    img = img.mean(2);
    const offset = tf.scalar(127.5);
    // Normalize the image from [0, 255] to [-1, 1].
    const normalized = img.sub(offset).div(offset);
    const batched = normalized.reshape([1, IMAGE_SIZE, IMAGE_SIZE, 1]);

    return mobilenet.predict(batched);
  });

  return logits
}

We first resize the image using resizeBilinear and convert it from color to grayscale
using mean. We then preprocess the pixels, normalizing them between -1 and 1. Finally,
we run the data through model.predict to get predictions. At the end of this pipeline, we
end up with predictions that we can display to the user.

Note the use of tf.tidy. This is very important because TensorFlow.js
creates intermediate tensors that might never be removed from memory.
Wrapping our operations inside tf.tidy automatically purges
intermediate elements from memory.

Over the last few years, technology improvements have made new applications in the
browser possible—image classification, text generation, style transfer, and pose estimation
are now available to anyone without needing to install anything.

Running on other devices
We have covered the conversion of models to run in the browser, and on iOS and Android
devices. TensorFlow Lite can also run on the Raspberry Pi, a pocket-sized computer
running Linux.

Moreover, devices designed specifically to run deep learning models started to emerge over
the years. Here are a few examples:

NVIDIA Jetson TX2: The size of a palm; it is often used for robotics applications.
Google Edge TPU: A chip designed by Google for IoT applications. It is the size
of a nail, and is available with a developer kit.
Intel Neural Compute Stick: The size of a USB flash drive; it can be connected to
any computer (including the Raspberry Pi) to improve its machine learning
capabilities.
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These devices all focus on maximizing computing power while minimizing power
consumption. With each generation getting more powerful, the on-device ML field is
moving extremely quickly, opening new applications every year.

Summary
In this chapter, we covered several topics on performance. First, we learned how to
properly measure the inference speed of a model, and then we went through techniques to
reduce inference time: choosing the right hardware and the right libraries, optimizing input
size, and optimizing post-processing. We covered techniques to make a slower model
appear, to the user, as if it were processing in real time, and to reduce the model size.

Then, we introduced on-device ML, along with its benefits and limitations. We learned how
to convert TensorFlow and Keras models to a format that's compatible with on-device deep
learning frameworks. With examples on iOS and Android, and in the browser, we covered
a wide range of devices. We also introduced some existing embedded devices.

Throughout this book, we have presented TensorFlow 2 in detail, applying it to multiple
computer vision tasks. We have covered a variety of state-of-the-art solutions, providing
both a theoretical background and some practical implementations. With this last chapter
tackling their deployment, it is now up to you to harness the power of TensorFlow 2 and to
develop computer vision applications for the use cases of your choice!

Questions
When measuring a model's inference speed, should you measure with a single1.
image or multiple ones?
Is a model with float32 weights smaller or larger than one with float16 weights?2.
On iOS devices, should Core ML or TensorFlow Lite be favored? What about3.
Android devices?
What are the benefits and limitations of running a model in the browser?4.
What is the most important requirement for embedded devices running deep5.
learning algorithms?



Migrating from TensorFlow 1 to
TensorFlow 2

Since TensorFlow 2 has only been released very recently, most of the projects that are
available online are still built for TensorFlow 1. While this first version was already packed
with useful features, such as AutoGraph and the Keras API, it is recommended that you
migrate to the latest version of TensorFlow so as to avoid any technical debt. Thankfully,
TensorFlow 2 comes with an automatic migration tool that is able to convert most projects
to its latest version. It requires little effort and outputs functional code. However, migrating
to idiomatic TensorFlow 2 code requires some diligence and knowledge of both versions. In
this section, we will introduce the migration tool and compare TensorFlow 1 concepts with
their TensorFlow 2 counterparts.

Automatic migration
After installing TensorFlow 2, the migration tool is available from the command line. To
convert a project directory, run the following command:

$ tf_upgrade_v2 --intree ./project_directory --outtree
./project_directory_updated

Here is a sample of the command's logs on an example project:

INFO line 1111:10: Renamed 'tf.placeholder' to 'tf.compat.v1.placeholder'
 INFO line 1112:10: Renamed 'tf.layers.dense' to
'tf.compat.v1.layers.dense'
 TensorFlow 2.0 Upgrade Script
 -----------------------------
 Converted 21 files
 Detected 1 issues that require attention
 ----------------------------------------------------------------------
 ----------------------------------------------------------------------
 File: project_directory/test_tf_converter.py
 ----------------------------------------------------------------------
 project_directory/test_tf_converter.py:806:10: WARNING:
tf.image.resize_bilinear called with align_corners argument requires manual
check: align_corners is not supported by tf.image.resize, the new default
transformation is close to what v1 provided. If you require exactly the
same transformation as before, use compat.v1.image.resize_bilinear.
  Make sure to read the detailed log 'report.txt'
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The conversion tool details all the changes it made to the files. In the rare case when it
detects a code line that requires manual attention, it outputs a warning with instructions to
update.

Most of the outdated calls are moved to tf.compat.v1. Indeed, despite the deprecation of
many concepts, TensorFlow 2 still provides access to the old API through this module.
However, be aware that calls to tf.contrib will cause the conversion tool to fail and
generate an error:

ERROR: Using member tf.contrib.copy_graph.copy_op_to_graph in deprecated
module tf.contrib. tf.contrib.copy_graph.copy_op_to_graph cannot be
converted automatically. tf.contrib will not be distributed with TensorFlow
2.0, please consider an alternative in non-contrib TensorFlow, a community-
maintained repository, or fork the required code.

Migrating TensorFlow 1 code
If the tool runs without any error, the code can be used as is. However, the tf.compat.v1
module used by the migration tool is deemed to be deprecated. Calling this module already
outputs deprecation warnings, and its content will not be further updated by the
community. For this reason, it is recommended that you refactor the code in order to make
it more idiomatic. In the following sections, we will introduce TensorFlow 1 concepts and
explain how to migrate them to TensorFlow 2. In the following examples, tf1 will be used
instead of tf to denote the use of TensorFlow 1.13.

Sessions
Since TensorFlow 1 does not use eager execution by default, the results of the operations
are not directly available. For instance, when summing two constants, the output object is
an operation:

import tensorflow as tf1 # TensorFlow 1.13

a = tf1.constant([1,2,3])
b = tf1.constant([1,2,3])
c = a + b
print(c) # Prints <tf.Tensor 'add:0' shape=(3,) dtype=int32
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To compute a result, you need to manually create tf1.Session. A session takes care of the
following:

Managing the memory
Running operations on CPU or GPU
Running on several machines if necessary

The most common way of using a session is through the with statement in Python. As with
other unmanaged resources, the with statement guarantees that the session is properly
closed after we use it. If the session is not closed, it may keep using memory. Sessions in
TensorFlow 1 are, therefore, typically instantiated and used as follows:

with tf1.Session() as sess:
 result = sess.run(c)
print(result) # Prints array([2, 4, 6], dtype=int32)

You can also explicitly close a session, but it is not recommended:

sess = tf1.Session()
result = sess.run(c)
sess.close()

In TensorFlow 2, session management happens behind the scenes. As the new version uses
eager execution, there is no need for this superfluous code to compute results. Calls to
tf1.Session() can, therefore, be removed.

Placeholders
In the previous example, we computed the sum of two vectors. However, we defined the
value of those vectors when creating the graph. If we wanted to use variables instead, we
could have used tf1.placeholder:

a = tf1.placeholder(dtype=tf.int32, shape=(None,))
b = tf1.placeholder(dtype=tf.int32, shape=(None,))
c = a + b

with tf1.Session() as sess:
  result = sess.run(c, feed_dict={
      a: [1, 2, 3],
      b: [1, 1, 1]
    })
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In TensorFlow 1, placeholders are mostly used to provide input data. Their type and shape
have to be defined. In our example, the shape is (None,) because we may want to run the
operation on vectors of any size. When running the graph, we have to provide specific
values for our placeholders. This is why we use the feed_dict argument in sess.run,
passing the content of variables as a dictionary, with the placeholders as keys. Failing to
provide a value for all placeholders would cause an exception.

Before TensorFlow 2, placeholders were used to provide input data, as well as layers'
parameters. The former use case can be replaced with tf.keras.Input, while the latter
can be addressed using tf.keras.layers.Layer parameters.

Variable management
In TensorFlow 1, variables were created globally. Each variable had a unique name and the
best practice in terms of creating them was to use tf1.get_variable():

weights = tf1.get_variable(name='W', initializer=[3])

Here, we created a global variable named W. Deleting the Python weights variable (using
the Python del weights command, for instance) would have no effect on TensorFlow
memory. In fact, if we try to create the same variable again, we would end up with an error:

Variable W already exists, disallowed. Did you mean to set reuse=True or
reuse=tf.AUTO_REUSE in VarScope?

While tf1.get_variable() allows you to reuse variables, its default behavior is to throw
an error if a variable with the chosen name already exists, preventing you from mistakenly
overriding variables. To avoid this error, we can update our call to
tf1.variable_scope(...) and employ the reuse argument:

with tf1.variable_scope("conv1", reuse=True):
    weights = tf1.get_variable(name='W', initializer=[3])

The variable_scope context manager was used to manage variable
creation. On top of handling variable reuse, it was useful to group
variables together by appending a prefix to their name. In the previous
example, the variable would be named conv1/W.

In this case, setting reuse to True means that if TensorFlow encounters a variable called
conv1/W, it will not throw an error as it did before. Instead, it will reuse the existing
variable, including its content. However, if you try calling the preceding code and the
variable named conv1/W does not exist, you will encounter the following error:

Variable conv1/W does not exist
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Indeed, reuse=True can only be specified when reusing an existing variable. If you want
to create a variable if it does not exist, and reuse it when it does exist, you can pass
reuse=tf.AUTO_REUSE.

In TensorFlow 2, the behavior is different. While variable scope still exists to make naming
and debugging easier, variables are no longer global. They are handled at the Python level.
As long as you can access the Python reference (the weights variable, in our example), you
can modify the variable. To delete the variable, you need to delete its reference, for
instance, by running the following command:

del weights

Previously, variables could be accessed and modified globally, and could potentially be
overridden by other pieces of code. The deprecation of global variables makes TensorFlow
code more readable and less prone to errors. 

Layers and models
TensorFlow models were originally defined using tf1.layers. As this module has been
deprecated in TensorFlow 2, the replacement of choice is tf.keras.layers. To train a
model using TensorFlow 1, a train operation has to be defined using an optimizer and a loss.
For instance, if y is the output of a fully connected layer, we would define the training
operation using the following command:

cross_entropy =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=output,
logits=y))
train_step = tf.train.AdamOptimizer(1e-3).minimize(cross_entropy)

Every time we call this operation, a batch of images will be fed to the network and a single
step of backpropagation will happen. We then run a loop to compute multiple training
steps:

num_steps = 10**7

with tf1.Session() as sess:
    sess.run(tf1.global_variables_initializer())

    for i in range(num_steps):
        batch_x, batch_y = next(batch_generator)
        sess.run(train_step, feed_dict={x: batch_x, y: batch_y})
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When opening the session, a call to tf1.global_variables_initializer() is
necessary so that layers are initialized with the correct weights. A failure to do so would
throw an exception. In TensorFlow 2, the initialization of variables is handled
automatically.

Other concepts
We detailed the most common TensorFlow 1 concepts that were deprecated in the new
version. Many smaller modules and paradigms were also redesigned in TensorFlow 2.
When migrating a project, we recommend having a thorough look at the documentation of
both versions. To ensure that a migration went well and the TensorFlow 2 version works as
expected, we recommend that you log both inference metrics (such as latency, accuracy, or
average precision) and training metrics (such as the number of iterations before
convergence), and compare their values between the old and new versions.

As it is open source and backed by an active community, TensorFlow is constantly
evolving—integrating new features, optimizing others, improving the developer
experience, and more. While this may sometimes require some additional effort, upgrading
to the latest version as soon as possible will provide you with the best environment to
develop more performant recognition applications.
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Assessments

Answers
The answers to the assessment questions found at the end of each chapter are shared in the
following sections.

Chapter 1
Which of the following tasks does not belong to computer vision: a web search1.
of images similar to a query, a 3D scene reconstruction from image sequences,
or the animation of a video character?

The latter, which instead belongs to the domain of computer graphics. Note,
however, that increasingly, computer vision algorithms are helping artists to
generate or animate content more efficiently (such as the motion capture
methods, for instance, which record actors performing some actions and
transfer the motions to virtual characters).

Which activation function did the original perceptrons use?2.

The step function.

Suppose we want to train a method to detect whether a handwritten digit is a3.
4. How should we adapt the network implemented in the chapter for this task?

In the chapter, we trained a classification network to identify pictures of
digits from 0 to 9. Therefore, the network had to predict the proper class
among 10, hence, an output vector of 10 values (one for each class
score/probability).

In this question, we define a different classification task. We want the
network to identify whether an image contains a 4 or not a 4. This is a binary
classification, and the network should, therefore, be edited to output only two
values.
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Chapter 2
What is Keras compared to TensorFlow? What is its purpose?1.

Keras was designed as a wrapper around other deep learning libraries to
make development easier. TensorFlow is now fully integrated with Keras
through tf.keras. It is best practice to use this module to create models in
TensorFlow 2.

Why does TensorFlow use graphs? How can they be created manually?2.

TensorFlow relies on graphs to ensure model performance and portability. In
TensorFlow 2, the best way to create graphs manually is to employ the
tf.function decorator.

What is the difference between eager execution mode and lazy execution3.
mode?

In lazy execution mode, no computation is performed until the user
specifically asks for a result. In eager execution mode, every operation is run
when it is defined. While the former can be faster thanks to graph
optimizations, the latter is easier to use and easier to debug. In TensorFlow 2,
lazy execution mode has been deprecated in favor of eager execution mode.

How do you log information in TensorBoard, and how do you display it? 4.

To log information in TensorBoard, you can use
the tf.keras.callbacks.TensorBoard callback and pass it to the .fit
method when training a model. To log information manually, you can use
the tf.summary module. To display information, launch the following
command:

$ tensorboard --logdir ./model_logs

Here, model_logs is the directory where TensorBoard logs are stored. This
command will output a URL. Navigate to this URL to monitor training.
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What are the main differences between TensorFlow 1 and 2?5.

TensorFlow 2 focuses on simplicity by removing graph management from
the hands of the user. It also uses eager execution by default, making models
easier to debug. Nevertheless, it still maintains its performance thanks to
AutoGraph and tf.function. It also integrates deeply with Keras, making
model creation easier than ever.

Chapter 3
Why does the output of a convolutional layer have a smaller width and height1.
than the input, unless it is padded?

The spatial dimensions of the output of a convolutional layer represent the
number of valid positions the kernels could take when sliding over the input
tensors, vertically and horizontally. Since kernels span over k × k pixels (if
square), the number of positions they can take over the input image without
being partially out of it can only be equal to (if k = 1), or less than, the image
dimensions.

This is expressed by the equations presented in the chapter, to compute the
output dimensions based on the layer's hyper parameters.

What would be the output of a max-pooling layer with a receptive field of (2, 2)2.
and a stride of 2 on the input matrix in Figure 3-6?
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How could LeNet-5 be implemented using the Keras Functional API in a non-3.
object-oriented manner ?

The code is as follows:

from tensorflow.keras import Model
from tensorflow.keras.layers import Inputs, Conv2D,
MaxPooling2D, Flatten, Dense

# "Layer" representing the network's inputs:
inputs = Input(shape=input_shape)
# First block (conv + max-pool):
conv1 = Conv2D(6, kernel_size=5, padding='same',
activation='relu')(inputs)
max_pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
# 2nd block:
conv2 = Conv2D(16, kernel_size=5, activation='relu')(max_pool1)
max_pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
# Dense layers:
flatten = Flatten()(max_pool2)
dense1 = Dense(120, activation='relu')(flatten)
dense2 = Dense(84, activation='relu')(dense1)
dense3 = Dense(num_classes, activation='softmax')(dense2)

lenet5_model = Model(inputs=inputs, outputs=dense3)

How does L1/L2 regularization affect the networks?4.

L1 regularization forces the layers to which it is applied to bring toward zero
the values of the parameters linked to less important features; that is, to
ignore less meaningful features (such as features tied to dataset noise).

L2 regularization compels the layers to keep their variables low, and, hence,
more homogeneously distributed. It prevents the network from developing a
small set of parameters with large values that overly influence its
predictions.

Chapter 4
Which TensorFlow Hub module can be used to instantiate an Inception1.
classifier for ImageNet?

The model at https:/ /tfhub. dev/ google/ tf2- preview/ inception_ v3/
classification/ 2 can be directly used to classify ImageNet-like images, as
this classification model was pretrained over this dataset.

https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2
https://tfhub.dev/google/tf2-preview/inception_v3/classification/2


Assessments

[ 327 ]

How can the first three residual macro-blocks of a ResNet-50 model from2.
Keras Applications be frozen?

The code is as follows:

freeze_num = 3
# Looking at `resnet50.summary()`, we could observe that the
1st layer of the 4th macro-block is named "res5[...]":
break_layer_name = 'res{}'.format(freeze_num + 2)
for layer in resnet50_finetune.layers:
   if break_layer_name in layer.name:
        break
    if isinstance(layer, tf.keras.layers.Conv2D):
        # If the layer is a convolution, and isn't after
        # the 1st layer not to train:
        layer.trainable = False

When is transfer learning discouraged?3.

Transfer learning may not be beneficial when the domains are too dissimilar
and the target data has a structure that is completely different to the source
data structure. As mentioned in the chapter, while CNNs can be applied to
images, text, and audio files, transferring weights trained for one modality to
another is not encouraged.

Chapter 5
What is the difference between a bounding box, an anchor box, and a ground1.
truth box?

A bounding box is the smallest rectangle enclosing an object. An anchor box
is a bounding box with a specific size. For each position in the image grid,
there are usually several anchor boxes with different aspect ratios—square,
vertical rectangle, and horizontal rectangle. By refining the size and the
position of the anchor box, the object detection model generates predictions.
A ground truth box is a bounding box corresponding to a specific object in
the training set. If a model is trained perfectly, it generates predictions that
are very close to ground truth boxes.
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What is the role of the feature extractor?2.

A feature extractor is a CNN that converts an image into a feature volume.
The feature volume is usually smaller in dimension than the input image and
contains meaningful features that can be passed to the remainder of the
network in order to generate predictions.

Which of the following models should you choose: YOLO or Faster R-CNN?3.

If speed is the priority, you should pick YOLO as it is the fastest architecture.
If accuracy is paramount, you should choose Faster R-CNN as it generates
the best predictions.

When are anchor boxes used?4.

Before anchor boxes, box prediction dimensions were generated using the
output of the network. As object sizes vary (a person usually fits in a vertical
rectangle, while a car fits in a horizontal rectangle), anchor boxes were
introduced. Using this technique, each anchor box is able to specialize for
one object ratio, leading to more precise predictions.

Chapter 6
What is the particularity of autoencoders?1.

Autoencoders are encoders-decoders whose inputs and targets are the same.
Their goal is to properly encode and then decode images without impacting
their quality, despite their bottleneck (that is, their latent space of lower
dimensionality). 

Which classification architecture are fully convolutional networks (FCNs)2.
based on?

FCNs use VGG-16 as the feature extractor.

How can a semantic segmentation model be trained so that it does not ignore3.
small classes?

Per-class weighing can be applied to the cross-entropy loss, thereby
penalizing more heavy pixels from smaller classes that are misclassified.
Losses that are not affected by the classes' proportions can also be used
instead, such as Dice.
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Chapter 7
Given an a = [1, 2, 3] tensor and a b = [4, 5, 6] tensor, how can a1.
tf.data pipeline that would output each value separately, from 1 to 6, be
built?

The code is as follows:

dataset_a = tf.data.Dataset.from_tensor_slices(a)
dataset_b = tf.data.Dataset.from_tensor_slices(b)
dataset_ab = dataset_a.concatenate(dataset_b)
for element in dataset_ab:
    print(element) # will print 1, then 2, ... until 6

According to the documentation of tf.data.Options, how can you ensure2.
that a dataset always returns samples in the same order, run after run?

The .experimental_deterministic attribute of tf.data.Options
should be set to True before being passed to the dataset.

Which domain adaptation methods that we introduced can be used when no3.
target annotations are available for training?

Unsupervised domain adaptation methods should be considered, such as
Learning Transferable Features with Deep Adaptation Networks, by Mingsheng
Long et al. (from Tsinghua University, China), or Domain-Adversarial
Neural Networks (DANN), by Yaroslav Ganin et al. (from Skoltech).

What role does the discriminator play in GANs?4.

It plays against the generator, trying to distinguish fake images from real
images. The discriminator can be considered as a trainable loss function to
guide the generator—the generator tries to minimize how correct the
discriminator is, with both networks becoming better and better at their task
as the training proceeds.
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Chapter 8
What are the main advantages of LSTMs over the simple RNN architecture?1.

LSTMs suffer less from gradient vanishing and are more capable of storing
long-term relationships in recurrent data. While they require more
computing power, this usually leads to better predictions.

How is a CNN used when it is applied before the LSTM?2.

The CNN acts as a feature extractor and reduces the dimensionality of the
input data. By applying a pretrained CNN, we extract meaningful features
from the input images. The LSTM trains faster since those features have a
much smaller dimensionality than the input image.

What is vanishing gradient and why does it occur? Why is it a problem?3.

When backpropagating the error in RNNs, we need to go back through the
time steps as well. If there are many time steps, the information slowly fades
away due to the way in which the gradient is computed. It is a problem since
it makes it harder for the network to learn how to generate good predictions.

What are some of the workarounds for the vanishing gradient problem?4.

One workaround is to use truncated backpropagation, which is a technique
described in the chapter. Another option is to use LSTMs instead of simple
RNNs, as they suffer less from gradient vanishing.

Chapter 9
When measuring a model's inference speed, should you measure with single1.
or multiple images?

Multiple images should be used to avoid measure bias.

Is a model with float32 weights larger or smaller than one with float162.
weights?

Float16 weights use about half the space of float32 weights. On
compatible devices, they can also be faster.
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On iOS devices, should you use Core ML or TensorFlow Lite? What about3.
Android devices?

On iOS devices, we recommend using Core ML where possible as it is
available natively and is tightly integrated with the hardware. On Android
devices, TensorFlow Lite should be used as there is no alternative.

What are the benefits and limitations of running a model in the browser?4.

It does not require any installation on the user side and does not require
computing power on the server side, making the application almost
infinitely scalable.

What is the most important requirement for embedded devices running deep5.
learning algorithms?

On top of computing power, the most important requirement is power
consumption, since most embedded devices run on batteries.
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